

I. ELEKTROCHEMIE - TP Elektrolyse (12)

- 1) Fertige eine beschriftete Skizze für den Versuchsaufbau zur Elektrolyse einer Zinkiodid-Lösung an! (3)
- 2) Beschreibe, was man während des Versuchs beobachten kann! (2)
- 3) Beschreibe die Vorgänge, die an den beiden Elektroden ablaufen! Gib dazu auch die entsprechenden chemischen Gleichungen an! (4)
- 4) Was kann man nach dem Ausschalten des Netzgerätes beobachten? Beschreibe und erkläre! (3)

II. HALBLEITER (8)

- 1) Erkläre, was man unter einem Halbleiter versteht! (2)
- 2) Ein pn-Übergang wird an einer äußeren Spannung betrieben. Beschreibe und erkläre, was passieren wird, wenn die p-Schicht positiv und die n-Schicht negativ gepolt wird! (3)
- 3) Eine LED (light-emitting-diode) mit differenziellem Widerstand $r_F=10~\Omega$ und Schleusenspannung $U_S=1.9~\rm V$ soll an einer idealen Spannungsquelle $U_0=12~\rm V$ (ohne Innenwiderstand) betrieben werden. Bestimme den Wert des zu verwendenden Vorwiderstandes R_V , damit die Stromstärke $I_F=50~\rm mA$ beträgt! (3)

III. MECHANISCHE WELLEN (11)

- 1) Erkläre den Unterschied zwischen einer Transversal- und einer Longitudinalwelle! (2)
- 2) Erkläre, welche zusätzliche Bedingung oder Bedingungen erfüllt sein müssen, damit bei der Überlagerung von zwei Wellen gleicher Frequenz, gleicher Wellenlänge und gleicher Amplitude:
 - a) maximale Verstärkung stattfindet; (2)
 - b) Auslöschung stattfindet! (2)
- 3) Gegeben sind die temperaturabhängigen Schallgeschwindigkeiten in Luft:

Temperatur (°C)	-20	0	20	40
c_{Luft} (m/s)	319	332	344	355

- a) Bestimme die Frequenz der Grundschwingung einer einseitig geschlossenen Orgelpfeife von 19,5 cm Länge, wenn diese mit Luft der Temperatur 20°C gefüllt ist! (4)
- b) Erkläre, wie sich die Frequenzen dieser Schwingung verändern wird, wenn die Temperatur der Pfeife abnimmt! (1)

IV. RADIOAKTIVITÄT (10)

- 1) Woraus bestehen Gammastrahlen? (1)
- 2) Beschreibe die Umwandlungen eines Atomkerns, bei der Abgabe einer Gamma-Strahlung! (1)
- 3) Eigenschaften der Gamma-Strahlung:
 - a) Beschreibe, wie sich Gammastrahlen in einem Magnetfeld verhalten! (1)
 - b) Beschreibe wie man Gammastrahlen abschwächen kann! (1)
- 4) Erkläre, was man unter der Halbwertszeit versteht! (1)
- 5) Beim Störfall in Fukushima wurde im Jahr 2011 radioaktives Cäsium des Isotops ¹³⁷Cs in die Umwelt freigesetzt. Dieses Isotop ist ein Beta-Strahler und besitzt eine Halbwertszeit von 30,05 Jahren. Bestimme die Zeit, nach Ablauf welcher 99,999 % des freigesetzten Cäsiums zerfallen sein wird! (5)

V. ENERGIE UND UMWELT - Geregelter Dreiwegekatalysator (10)

- 1) Beschreibe den Aufbau des geregelten Dreiwegekatalysators! (4)
- 2) Beschreibe die chemischen Reaktionen, die im Dreiwegekatalysator ablaufen! (3)
- 3) Beschreibe, wie die Lambda-Regelung funktioniert! Warum ist diese notwendig! (3)

VI. SÄUREN UND BASEN (9)

- 1) Definiere: "pH-Wert" und "pOH-Wert"! Gib auch den Zusammenhang zwischen beiden Werten an! (2)
- 2) Erkläre, was man unter einer neutralen, sauren und basischen wässrigen Lösung versteht! (2)
- 3) Es sollen 2000 ml Natronlauge (wässrige Lösung von Natriumhydroxid NaOH) der Stoffmengenkonzentration 0,025 mol/L hergestellt und untersucht werden.
 - a) Berechne die Masse an Natriumhydroxid, die zur Herstellung der Lösung notwendig ist! (3)
 - b) Berechne den pH-Wert der vorhandenen Lösung! (2)

NATURKONSTANTEN

Konstante	Symbol	Wert	SI-Einheit
Avogadro-Konstante	N_A	6,022 · 10 ²³	mol^{-1}
Elementarladung	e	$1,602 \cdot 10^{-19}$	С
Lichtgeschwindigkeit	С	$2,998 \cdot 10^8$	$\mathrm{m}\cdot\mathrm{s}^{-1}$
Planck-Konstante	h	$6,626 \cdot 10^{-34}$	J·s
Elektrische Feldkonstante	$arepsilon_0$	$8,854 \cdot 10^{-12}$	$\mathrm{C}\cdot\mathrm{V}^{-1}\cdot\mathrm{m}^{-1}$
Ruhemasse des Elektrons	m_e	$9,109 \cdot 10^{-31}$	kg
Ruhemasse des Protons	m_p	$1,673 \cdot 10^{-27}$	kg
Ruhemasse des Neutrons	m_n	$1,675 \cdot 10^{-27}$	kg

Umwandlung von Einheiten außerhalb des SI-Systems									
Atomare Masseneinheit	1 u	$1,6605 \cdot 10^{-27}$	kg						
Elektronvolt	1 eV	$1,602 \cdot 10^{-19}$	J						

PERIODENSYSTEM DER ELEMENTE

I	П											Ш	IV	V	VI	VII	VIII
1,0 H 1													4,0 He				
6,9 T:	9,0 D o											10,8	12,0	14,0	16,0	19,0	20,2 N.I.o.
Li 3	Be 4											В 5	C 6	N 7	8 8	. F 9	Ne 10
23,0	24,3											27,0	28,1	31,0	32,1	35,5	39,9
Na	Mg	IIIA	IVA	VA	VIA	VIIA		VIIIA		IA	IIA	A1	Si	P	S	Cl	Ar
39,1	12 40,1	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	69,7	14 726	15 74,9	16 79,0	17 79,9	18 83,8
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20 20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85,5	87,6	88,9	91,2	92,9	95,9	(98,6)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag	Cd 48	In 49	Sn 50	Sb 51	Te 52	I 53	Xe 54
132,9	137,3	138,9	178,5	180,9	183,9	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	(209)	(210)	(222)
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56	57	<i>7</i> 2	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226,0	227,0	(261)	(262)	(263)												
Fr 87	Ra 88	Ac	Rf 104	Ha 105	Sg												
U/	00	07	104	100	100												

140,1	140,9	144,2	(145)	150,4	152,0	157,3	158,9	162,5	164,9	167,3	168,9	173,0	175,0
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
232,0	231,0	238,0	237,0	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103