EXAMEN DE FIN D'ÉTUDES SECONDAIRES – Sessions 2024 QUESTIONNAIRE Date: 17.09.24 Horaire: 08:15 - 10:45 Durée: 150 minutes Discipline: PHYSI Type: écrit Section(s): GIG Numéro du candidat:

Légende: T: théorie E: exercice TP: travail pratique

1. Lentilles (12 points)

1.1 Dérivez la loi de conjugaison en partant du grandissement. Accompagnez la dérivation d'une esquisse explicative. (T: 3P.)

- 1.2 On utilise un vidéoprojecteur pour créer une image agrandie d'un objet sur un écran.
 - **1.2.1** Indiquez par quel type de lentille cela peut être réalisé. Donnez deux raisons.

(T: 2P.)

1.2.2 On veut que l'image sur l'écran prenne le plus de place possible. La distance-image doit rester inchangée. Faut-il choisir une lentille dont la distance focale est la plus grande ou la plus petite possible ? Justifiez votre réponse avec une esquisse.

(E: 3P.)

1.2.3 L'objet de ce vidéoprojecteur a une taille de 3,50 cm et l'image doit être créée à une distance de 250 cm de l'objet. Calculez la distance-objet et la distance focale de la lentille si la taille de l'image est de 1,50 m.

(E: 4P.)

2. Travail pratique : Réseau optique

(11 points)

Les lignes d'une lampe à néon ont été captées sur un écran à l'aide d'un réseau optique avec 400 fentes par mm. L'écran se trouve à une distance de 62,5 cm du réseau. De toutes les lignes du 1^{er} ordre visibles sur l'écran, un élève n'a dessiné qu'une ligne jaune, une ligne verte et une ligne rouge. Il a obtenu l'image suivante sur l'écran :

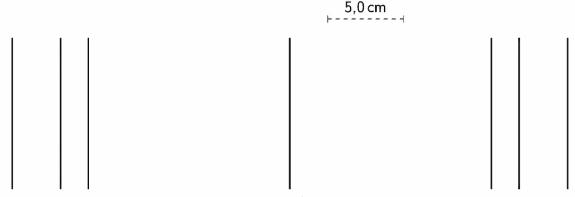


Fig. 1: image écran

- **2.1** Esquissez le dispositif expérimental et annotez tous les éléments. (TP: 2P.)
- 2.2 Indiquez quelle ligne correspond à quelle couleur. Déterminez la distance d de chaque ligne au maximum central en utilisant l'échelle donnée. Utilisez pour cela les deux côtés de l'image de l'écran. Remarque : La ligne pointillé doit être utilisée pour déterminer l'échelle de l'image écran. (TP: 3P.)
- 2.3 Dérivez une équation pour calculez la longueur d'onde des lignes en partant de la condition d'interférence constructive du réseau optique. Accompagnez votre explication d'une esquisse. Déterminez la longueur d'onde des couleurs des lignes représentées à l'aide des mesures de 2.2. Décrivez votre démarche. (TP: 4P.)
- 2.4 Une mesure plus précise donne une longueur d'onde de 703,24 nm pour une des lignes. Calculez l'écart absolu et relatif (en pourcent) entre votre mesure et la mesure plus précise (TP: 2 P.)

3. Accélérateur de particules

(13 points)

Dans un accélérateur de particules circulaire de longueur 2,978 km, des ions d'or (masse au repos : 197,0 u) se déplacent proche de la vitesse de la lumière avant d'entrer en collision. Au laboratoire, on mesure une fréquence de rotation des ions d'or de 74,80 kHz.

On considère deux référentiels :

- A : référentiel du laboratoire
- B : référentiel où les ions sont au repos
- **3.1** Écrivez les deux principes fondamentaux de la théorie de la relativité restreinte. (T: 2P.)
- **3.2** Expliquez le terme « temps propre ». (T: 1P.)
- **3.3** Dans quel référentiel mesure-t-on la longueur propre de l'accélérateur de particules ? Justifiez votre réponse. (E: 1P.)
- 3.4 Nous imaginons les ions d'or au repos de manière simplifiée comme des sphères. (fig. 2).

fig. 2: ion d'or au repos

Les ions d'or se déplacent maintenant avec une vitesse proche de celle de la lumière (de la gauche vers la droite). Indiquez laquelle des représentations suivantes (fig. 3) reproduit le mieux la forme des ions d'or dans les deux référentiels. Justifiez à chaque fois votre réponse.

(E: 3P.)

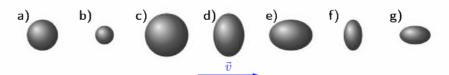


fig. 3: formes possibles des ions d'or

- **3.5** Déterminez la période de rotation des ions d'or dans les deux référentiels, si on mesure le temps propre dans le référentiel B. (E: 3P.)
- **3.6** Déterminez l'énergie cinétique d'un ion d'or en GeV. (E: 3P.)

4. Physique nucléaire

(10 points)

4.1 Décrivez ce que l'on entend par « radioactivité ».

(T: 2P.)

- **4.2** Or-198 est un émetteur beta-moins. Écrivez l'équation de désintégration et nommez toutes les particules présentes. (E: 2P.)
- **4.3** La courbe de désintégration suivante s'applique pour une préparation d'indium-111.

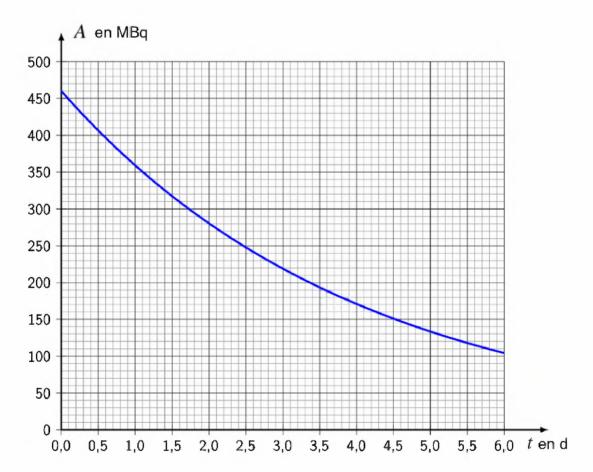


fig. 4 : courbe de désintégration pour une préparation d'indium-111

- 4.3.1 Déterminez à l'aide du graphique la constante de désintégration d'indium-111 en unité-SI.(E: 2P.)
- **4.3.2** Calculez après combien de jours il reste encore 4,53·10¹² de noyaux atomiques d'indium-111. (E: 4P.)

5. Mécanique quantique

(14 points)

- 5.1 Est-ce que l'apparition de l'effet photoélectrique dépend des facteurs suivants. Justifiez !
 - De la fréquence du rayonnement électromagnétique incident ;
 - De l'intensité du rayonnement électromagnétique incident ;
 - Du matériau qui est soumis au rayonnement électromagnétique. (T: 3P.)
- **5.2** En partant de la force de Coulomb entre l'électron et le noyau de l'atome d'hydrogène, montrez que l'énergie totale de l'électron dans l'atome d'hydrogène est donnée par l'expression suivante :

$$E = \frac{1}{2} \cdot m_e \cdot v^2 - \frac{1}{4\pi\varepsilon_0} \cdot \frac{e^2}{r}$$

Compléter la dérivation avec toutes les explications et esquisses nécessaires. (T: 6P.)

- **5.3** A l'aide de l'équation précédente et de la condition quantique pour des ondes stationnaires, on peut conclure que les rayons des trajectoires et les états d'énergie sont quantifiés dans l'atome d'hydrogène.
 - **5.3.1** Expliquez ce que l'on entend dans ce contexte par « quantifié ». (T: 1P.)
 - **5.3.2** On peut aussi conclure de la quantification des états d'énergie qu'un atome d'hydrogène excité ne peut émettre que de la lumière de longueurs d'onde spécifiques. Calculez la longueur d'onde de la lumière émise si un atome d'hydrogène transitionne du niveau n=5 au niveau n=3. Est-ce que la lumière émise est visible pour un humain ? (Spectre visible : 380 nm à 780 nm) (E: 4P.)

Constantes physiques

Constante physique	Symbole	Valeur	Unité
nombre d'Avogadro	N _A	$6,022 \cdot 10^{23}$	mol^{-1}
charge élémentaire	e	$1,602 \cdot 10^{-19}$	С
vitesse de la lumière (*)	c	$2,998 \cdot 10^8$	$m\cdot s^{-1}$
constante de Planck	h	$6,626\cdot 10^{-34}$	$J \cdot s$
permittivité du vide	٤٥	$8,854 \cdot 10^{-12}$	$C \cdot V^{-1} \cdot m^{-1}$
masse au repos de l'électron	$m_{ m e}$	$9,109 \cdot 10^{-31}$	kg
		= 0,5110	MeV/c^2
masse au repos du proton	$m_{ m p}$	$1,673 \cdot 10^{-27}$	kg
		= 938,3	MeV/c^2
masse au repos du neutron	m_{n}	$1,675 \cdot 10^{-27}$	kg
		= 939,6	MeV/c^2
masse au repos d'une particule α	m_{lpha}	$6,645 \cdot 10^{-27}$	kg
·		$= 3,727 \cdot 10^3$	MeV / c²

Conversion d'unités en dehors du système SI								
unité de masse atomique	1 u	$1,6605 \cdot 10^{-27}$	kg					
électron-volt	1 eV	$1,602 \cdot 10^{-19}$	J					
année	1 a	365,25	d (jours)					

(*) **Remarque:** Pour la vitesse de la lumière, on peut utiliser la valeur $c=3.00\cdot 10^8~{\rm m/s}$ dans les calculs.

Formules trigonométriques

I	П											Ш	IV	V	VI	VII	VIII
1,0		,															4,0
Н																	He
1	0.0	1										10.0	120	140	16.0	I 10.0	2 20.2
6,9 T •	9,0											10,8	12,0	14,0	16,0	19,0	20,2
Li	Be 4											B	C	N_{7}	8 O	F s	Ne
23,0	24,3	-										27,0	28,1	31,0	32,1	35,5	39,9
1	l													1	l '	I	
Na	Mg	IIIA	IVA	VA	VIA	VIIA		VIIIA		IA	IIA	Al	Si	P	S 16	Cl	Ar
39,1	40,1	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	
	l '	l '	1	l '	1 '			l '	· ′	l '	l '	l '		1	l '	I '	83,8 T/
K	Ca 20	Sc	Ti	$\int_{\Omega} V$	Cr	Mn 25	Fe	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge	As	Se 34	Br 35	Kr 36
		21	22	23	24		26										
85,5	87,6	88,9	91,2	92,9	95,9	(98,6)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132,9	137,3	138,9	178,5	180,9	183,9	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	(209)	(210)	(222)
Cs	Ba	La	Hf	Ta	W	Re	Os	_Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226,0	227,0	(261)	(262)	(263)												
Fr	Ra	Ac	Rf	На	Sg												
87	88	89	104	105	106												

152,0

Eu

63

(243)

Am 95 157,3

64

96

(247)

Cm

Gd

158,9

65

(247)

Bk 97

Tb

162,5

Dy

66

98

(251)

Cf

164,9

67

99

(254)

Es

Но

150,4

62

94

(244)

Pu

Sm

167,3

Er

68

(257)

Fm

100

168,9

69

(258)

101

Tm

Md

173,0

Yb

70

(259)

No 102 175,0

Lu

(260)

Lr

103

71

140,1

58

232,0

Th

Ce

140,9

Pr

59

231,0

Pa | 91 144,2

60

92

238,0

U

Nd

(145)

61

93

237,0

Np

Pm

Tableau périodique des éléments

Z		Element	Élément	z		Element	Élément
1	Н	Wasserstoff	Hydrogène	56	Ba	Barium	Baryum
2	He	Helium	Hélium	57	La	Lanthan	Lanthane
3	Li	Lithium	Lithium	58	Ce	Cer	Cérium
4	Be	Beryllium	Béryllium	59	Pr	Praseodym	Praséodyme
5	В	Bor	Bore	60	Nd	Neodym	Néodyme
6	\bar{c}	Kohlenstoff	Carbone	61	Pm	Promethium	Prométhium
7	N	Stickstoff	Azote	62	Sm	Samarium	Samarium
8	O	Sauerstoff	Oxygène	63	Eu	Europium	Europium
9	F	Fluor	Fluor	64	Gd	Gadolinium	Gadolinium
10	Ne	Neon	Néon	65	Tb	Terbium	Terbium
11	Na	Natrium	Sodium	66	Dy	Dysprosium	Dysprosium
12	Mg	Magnesium	Magnésium	67	Ho	Holmium	Holmium
13	Αl	Aluminium	Aluminium	68	Er	Erbium	Erbium
14	Si	Silizium	Silicium	69	Tm	Thulium	Thulium
15	P	Phosphor	Phosphore	70	Yb	Ytterbium	Ytterbium
16	S	Schwefel	Soufre	71	Lu	Lutetium	Lutécium
17	C1	Chlor	Chlore	72	Hf	Hafnium	Hafnium
18	Ar	Argon	Argon	73	Ta	Tantal	Tantale
19	K	Kalium	Potassium	74	W	Wolfram	Tungstène
20	Ca	Kalzium	Calcium	75	Re	Rhenium	Rhénium
21	Sc	Scandium	Scandium	76	Os	Osmium	Osmium
22	Ti	Titan	Titane	77	Ir	Iridium	Iridium
23	V	Vanadium	Vanadium	78	Pt	Platin	Platine
24	Cr	Chrom	Chrome	79	Au	Gold	Or
25	Mn	Mangan	Manganèse	80	Hg	Quecksilber	Mercure
26	Fe	Eisen	Fer	81	TÎ	Thallium	Thallium
27	Co	Kobalt	Cobalt	82	Pb	Blei	Plomb
28	Ni	Nickel	Nickel	83	Bi	Bismut	Bismuth
29	Cu	Kupfer	Cuivre	84	Po	Polonium	Polonium
30	Zn	Zink	Zinc	85	At	Astat	Astate
31	Ga	Gallium	Gallium	86	Rn	Radon	Radon
32	Ge	Germanium	Germanium	87	Fr	Francium	Francium
33	As	Arsen	Arsenic	88	Ra	Radium	Radium
34	Se	Selen	Sélénium	89	Ac	Actinium	Actinium
35	Br	Brom	Brome	90	Th	Thorium	Thorium
36	Kr	Krypton	Krypton	91	Pa	Protactinium	Protactinium
37	Rb	Rubidium	Rubidium	92	U	Uran	Uranium
38	Sr	Strontium	Strontium	93	Np	Neptunium	Neptunium
39	Y	Yttrium	Yttrium	94	Pu	Plutonium	Plutonium
40	Zr	Zirkonium	Zirconium	95	Am	Americium	Américium
41	Nb	Niob	Niobium	96	Cm	Curium	Curium
42	Mo	Molybdän	Molybdène	97	Bk	Berkelium	Berkélium
43	Tc	Technetium	Technétium	98	Cf	Californium	Californium
44	Ru	Ruthenium	Ruthénium	99	Es	Einsteinium	Einsteinium
45	Rh	Rhodium	Rhodium	100	Fm	Fermium	Fermium
46	Pd	Palladium	Palladium	101	Md	Mendelevium	Mendélévium
47	Ag	Silber	Argent	102	No	Nobelium	Nobélium
48	Cd	Kadmium	Cadmium	103	Lr	Lawrencium	Lawrencium
49	In	Indium	Indium	104	Rf	Rutherfordium	Rutherfordium
50	Sn	Zinn	Étain	105	Db	Dubnium	Dubnium
51	Sb	Antimon	Antimoine	106	Sg	Seaborgium	Seaborgium
52	Te	Tellur	Tellure	107	Bh	Bohrium	Bohrium
53	I	Jod	Iode	108	Hs	Hassium	Hassium
54	Xe	Xenon	Xénon	109	Mt	Meitnerium	Meitnérium
55	Cs	Cäsium	Césium				