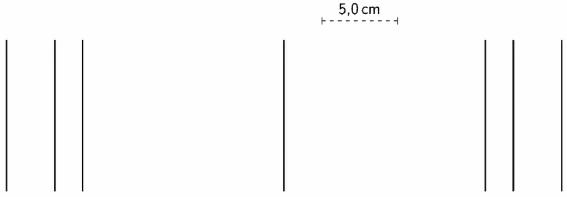


Legende: T: Theorie A: Aufgabe P: Praktikum

1. Linsen (12 Punkte)

1.1 Leiten Sie die Abbildungsgleichung her, ausgehend vom Abbildungsmaßstab und durch eine erklärende Skizze begleitet. (T: 3P.)


- **1.2** Mit einem Videoprojektor soll von einem Gegenstand ein vergrößertes Bild auf einem Schirm entstehen.
 - **1.2.1** Geben Sie an, mit welcher Art von Linse dies erreicht werden kann. Geben Sie zwei Gründe an. (T: 2P.)
 - 1.2.2 Das Bild auf dem Schirm soll den größtmöglichen Platz einnehmen. Die Bildweite soll unverändert bleiben. Muss deshalb die Brennweite der Linse möglichst groß oder möglichst klein gewählt werden? Begründen Sie die Antwort mit Hilfe einer Skizze. (A: 3P.)
 - 1.2.3 Bei diesem Videoprojektor ist der Gegenstand 3,50 cm hoch und das Bild soll in einer Entfernung von 250 cm zum Gegenstand entstehen. Berechnen Sie die Gegenstandsweite und die Brennweite der Linse, wenn das Bild 1,50 m hoch ist.

2. Praktikum: Beugungsgitter

(11 Punkte)

(A: 4P.)

Die Linien einer Neongaslampe sind mit einem Beugungsgitter mit 400 Strichen pro mm auf einem Schirm abgebildet worden. Der Schirm befindet sich in einer Entfernung von 62,5 cm zum Gitter. Von allen auf dem Schirm sichtbaren Linien der 1. Ordnung hat ein Schüler nur eine gelbe, eine grüne und eine rote Linie abgezeichnet und folgendes Schirmbild erhalten.

- **2.1** Skizzieren Sie den Versuchsaufbau und beschriften Sie alle Bestandteile. (P: 2P.)
- **2.2** Geben Sie an, welche Linie welcher Farbe entspricht. Bestimmen Sie unter Berücksichtigung des Maßstabes die jeweilige Entfernung d zum zentralen Maximum. Benutzen Sie hierzu beide Seiten des Schirmbildes. *Hinweis*: Die abgebildete gestrichelte Linie soll benutzt werden, um den Maßstab des Schirmbildes zu bestimmen. (P: 3P.)
- 2.3 Leiten Sie, ausgehend von der Bedingung für konstruktive Interferenz beim Beugungsgitter, eine Gleichung her, um die Wellenlänge der Linien zu bestimmen. Begleiten Sie ihre Erklärungen durch eine Skizze. Bestimmen Sie dann mit Hilfe der Messungen von 2.2 die Wellenlängen für die Farben der abgebildeten Linien. Beschreiben Sie die Vorgehensweise.
 (P: 4P.)
- 2.4 Eine genauere Messung ergibt für eine der Linien eine Wellenlänge von 703,24 nm. Berechnen Sie die absolute Abweichung und die relative Abweichung (in Prozent) ihres Messwertes zur genaueren Messung.
 (P: 2 P.)

3. Teilchenbeschleuniger

(13 Punkte)

In einem kreisförmigen Teilchenbeschleuniger mit einer Länge von 2,978 km, bewegen sich Gold-Ionen (Ruhemasse: 197,0 u) mit einer Geschwindigkeit nahe der Lichtgeschwindigkeit, bevor sie zusammenstoßen. Im Labor wird eine Umlauffrequenz der Gold-Ionen von 74,80 kHz gemessen.

Wir betrachten zwei Bezugssysteme:

- A: Bezugssystem des Labors
- B: Bezugssystem in dem die Ionen ruhen
- **3.1** Schreiben Sie die zwei Grundprinzipien der speziellen Relativitätstheorie. (T: 2P.)
- **3.2** Erklären Sie den Begriff der "Eigenzeit". (T: 1P.)
- **3.3** Begründen Sie, in welchem der Bezugssysteme die Eigenlänge der Länge des Teilchenbeschleunigers gemessen wird. (A: 1P.)
- **3.4** Wir stellen uns die Gold-Ionen, im Ruhezustand, vereinfachend als Kugeln vor (Abb. 2).

Abb. 2: Gold-Ion im Ruhezustand

Die Gold-Ionen bewegen sich nun mit einer Geschwindigkeit nahe der Lichtgeschwindigkeit (von links nach rechts). Geben Sie an, welche der folgenden Darstellungen (Abb. 3) am besten die Form der Gold-Ionen in beiden Bezugssystemen wiedergibt. Begründen Sie jeweils die Antwort. (A: 3P.)

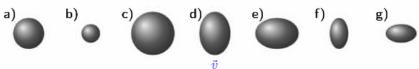


Abb. 3: Mögliche Formen des Gold-Ions

- **3.5** Bestimmen Sie die Umlaufzeit der Gold-Ionen in beiden Bezugssystemen, wenn im Bezugssystem B die Eigenzeit gemessen wird. (A: 3P.)
- **3.6** Bestimmen Sie die kinetische Energie eines Gold-Ions in GeV. (A: 3P.)

4. Kernphysik (10 Punkte)

- **4.1** Beschreiben Sie was man unter "Radioaktivität" versteht. (T: 2P.)
- **4.2** Gold-198 ist ein Beta-Minus-Strahler. Schreiben Sie die Zerfallsgleichung und benennen Sie alle vorkommenden Teilchen. (A: 2P.)
- **4.3** Für ein Präparat aus Indium-111 gilt folgende Zerfallskurve.

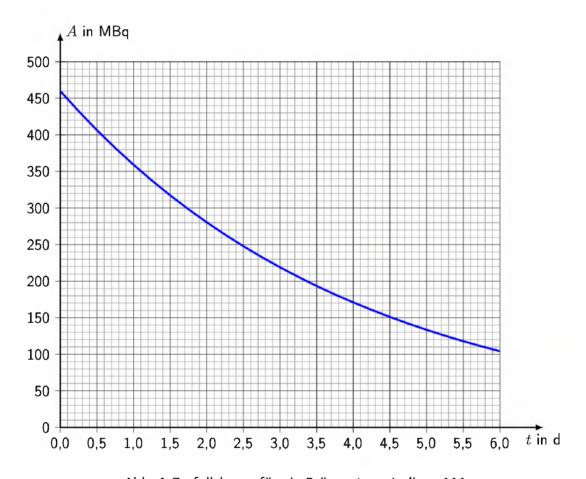


Abb. 4: Zerfallskurve für ein Präparat aus Indium-111

- **4.3.1** Bestimmen Sie mit Hilfe des Diagramms die Zerfallskonstante von Indium-111 in der SI-Einheit. (A: 2P.)
- **4.3.2** Berechnen Sie nach wie vielen Tagen noch 4,53·10¹² Indium-111-Atomkerne vorhanden sind. (A: 4P.)

5. Quantenmechanik

(14 Punkte)

- **5.1** Begründen Sie, ob das Auftreten des Photoeffekts von folgenden Faktoren abhängt:
 - Von der Frequenz der einfallenden elektromagnetischen Strahlung;
 - Von der Intensität der einfallenden elektromagnetischen Strahlung;
 - Vom Material das der elektromagnetischen Strahlung ausgesetzt ist. (T: 3P.)
- **5.2** Zeigen Sie, ausgehend von der Coulomb-Kraft zwischen dem Elektron und dem Kern des Wasserstoffatoms, auf, dass die Gesamtenergie des Elektrons im Wasserstoffatom durch folgenden Ausdruck gegeben ist:

$$E = \frac{1}{2} \cdot m_e \cdot v^2 - \frac{1}{4\pi\varepsilon_0} \cdot \frac{e^2}{r}$$

Ergänzen Sie die Herleitung durch alle nötigen Erklärungen und Skizzen. (T: 6P.)

- **5.3** Mit Hilfe der vorherigen Gleichung und der Quantenbedingung für stehende Wellen, kann man darauf schließen, dass die Bahnradien und die Energiezustände im Wasserstoffatom quantisiert sind.
 - **5.3.1** Erklären Sie was man in diesem Zusammenhang unter "quantisiert" versteht. (T: 1P.)
 - **5.3.2** Des Weiteren kann man aus der Quantisierung der Energiezustände schließen, dass ein angeregtes Wasserstoffatom nur Licht bestimmter Wellenlängen aussenden kann. Berechnen Sie die Wellenlänge des ausgesendeten Lichts, wenn ein Wasserstoffatom vom Niveau n=5 auf das Niveau n=3 übergeht. Ist das ausgesendete Licht für den Menschen sichtbar? (sichtbares Spektrum: 380 nm bis 780 nm) (A: 4P.)

Physikalische Konstanten

Physikalische Konstante	Symbol	Wert	Einheit
Avogadro-Konstante	NA	$6,022 \cdot 10^{23}$	mol ⁻¹
Elementarladung	e	$1,602 \cdot 10^{-19}$	С
Lichtgeschwindigkeit (*)	С	$2,998 \cdot 10^8$	$m \cdot s^{-1}$
Planck-Konstante	h	$6,626 \cdot 10^{-34}$	$J \cdot s$
Elektrische Feldkonstante	ϵ_0	$8,854 \cdot 10^{-12}$	$C\!\cdot\! V^{-1}\!\cdot\! m^{-1}$
Ruhemasse des Elektrons	m e	$9,109 \cdot 10^{-31}$	kg
		= 0,5110	$\mathrm{MeV} / \mathit{c}^2$
Ruhemasse des Protons	$m_{ m p}$	$1,673 \cdot 10^{-27}$	kg
		= 938,3	MeV/c^2
Ruhemasse des Neutrons	$m_{ m n}$	$1,675 \cdot 10^{-27}$	kg
		= 939,6	MeV/c^2
Ruhemasse des $lpha$ -Teilchens	m a	$6,645\cdot 10^{-27}$	kg
		$=3,727\cdot 10^3$	MeV / c ²

Umwandlung von Einheiten außerhalb des SI-Systems								
Atomare Masseneinheit	1 u	$1,6605 \cdot 10^{-27}$	kg					
Elektronvolt	1 eV	$1,602 \cdot 10^{-19}$	J					
Jahr	1 a	365,25	d (Tage)					

(*) **Bemerkung:** Für die Lichtgeschwindigkeit kann in den Rechnungen der Wert $c=3,00\cdot 10^8$ m/s verwendet werden.

Formelsammlung Trigonometrie

Π IV VIVII \mathbf{III} V VШ 1.0 4,0 H He 12,0 6,9 9,0 10,8 14,0 16,0 19,0 20,2 C В F Ne Li Be N 0 8 9 10 23,0 39,9 24,3 27,0 28,1 32,1 35,5 31,0 Si Na Mg P Al S Cl Ar VIIIA IIIA IVA VA VIA VIIA ΠA IA 12 13 14 15 16 17 18 39,1 58,9 58,7 72,6 83,8 40,1 45,0 47,9 52,0 549 55,8 63,5 65,4 69,7 74,9 79,0 79,9 50,9 K Ca Sc Ti V Fe Co Ni Zn Ge Se Kr Mn Cu Ga Br Cr As 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 85,5 87,6 88,9 92,9 95,9 (98,6)102,9 106,4 112,4 131,3 91,2 101,1 107,9 114,8 118,7 121,8 127,6 126,9 Rb Sr Y ZrNb Mo Tc Ru Rh Pd Cd Sn Sb Te Xe In Ag 39 42 50 52 53 54 38 40 43 45 51 132,9 137,3 138,9 178,5 180,9 183,9 186,2 190,2 192,2 195,1 197,0 200,6 204,4 207,2 (222)209,0 (209)(210)Hg Cs Ta Pt Tl Pb Ba La Hf W Re Os Ir Au Bi Po At Rn 55 56 57 73 75 76 77 78 81 82 84 72 74 83 85 86 (223)226,0 227,0 (261)(262)(263)Fr Ra Ac Rf Ha Sg 87 89 105 88 104 106

140,1

58

232,0

90

Th

Ce

140,9

59

231,0

Pa

Pr

144,2

Nd

60

238,0

U

92

(145)

61

93

237,0

Np

Pm

150,4

Sm

62

94

(244)

Pu

152,0

63

(243)

Am

Eu

157,3

Gd

64

(247)

Cm

158,9

Tb

65

97

(247)

Bk

162,5

Dy

(251)

Cf

66

98

167,3

68

(257)

100

Fm

Er

168,9

Tm

69

(258)

101

Md

173,0

Yb

70

(259)

No

102

175,0

Lu

(260)

Lr

103

71

164,9

Ho

67

99

(254)

Es

eriodensystem der Elemente

Z		Element	Élément	z		Element	Élément
1	Н	Wasserstoff	Hydrogène	56	Ba	Barium	Baryum
2	He	Helium	Hélium	57	La	Lanthan	Lanthane
3	Li	Lithium	Lithium	58	Ce	Cer	Cérium
4	Be	Beryllium	Béryllium	59	Pr	Praseodym	Praséodyme
5	В	Bor	Bore	60	Nd	Neodym	Néodyme
6	C	Kohlenstoff	Carbone	61	Pm	Promethium	Prométhium
7	N	Stickstoff	Azote	62	Sm	Samarium	Samarium
8	O	Sauerstoff	Oxygène	63	Eu	Europium	Europium
9	F	Fluor	Fluor	64	Gd	Gadolinium	Gadolinium
10	Ne	Neon	Néon	65	Tb	Terbium	Terbium
11	Na	Natrium	Sodium	66	Dy	Dysprosium	Dysprosium
12	Mg	Magnesium	Magnésium	67	Но	Holmium	Holmium
13	Al	Aluminium	Aluminium	68	Er	Erbium	Erbium
14	Si	Silizium	Silicium	69	Tm	Thulium	Thulium
15	P	Phosphor	Phosphore	70	Yb	Ytterbium	Ytterbium
16	S	Schwefel	Soufre	71	Lu	Lutetium	Lutécium
17	Cl	Chlor	Chlore	72	Hf	Hafnium	Hafnium
18	Ar	Argon		73	Ta	Tantal	Tannale
19	K	Kalium	Argon Potassium	74	W	Wolfram	
20	Ca	Kalium Kalzium	Calcium	75		Rhenium	Tungstène Rhénium
		Scandium			Re		
21	Sc		Scandium	76	Os	Osmium	Osmium
22	Ti	Titan	Titane	77	Ir D	Iridium	Iridium
23	V	Vanadium	Vanadium	78	Pt	Platin	Platine
24	Cr	Chrom	Chrome	79	Au	Gold	Or
25	Mn	Mangan	Manganèse	80	Hg	Quecksilber	Mercure
26	Fe	Eisen	Fer	81	T1	Thallium	Thallium
27	Co	Kobalt	Cobalt	82	Pb	Blei	Plomb
28	Ni	Nickel	Nickel	83	Bi	Bismut	Bismuth
29	Cu	Kupfer	Cuivre	84	Po	Polonium	Polonium
30	Zn	Zink	Zinc	85	At	Astat	Astate
31	Ga	Gallium	Gallium	86	Rn	Radon	Radon
32	Ge	Germanium	Germanium	87	Fr	Francium	Francium
33	As	Arsen	Arsenic	88	Ra	Radium	Radium
34	Se	Selen	Sélénium	89	Ac	Actinium	Actinium
35	Br	Brom	Brome	90	Th	Thorium	Thorium
36	Kr	Krypton	Krypton	91	Pa	Protactinium	Protactinium
37	Rb	Rubidium	Rubidium	92	U	Uran	Uranium
38	Sr	Strontium	Strontium	93	Np	Neptunium	Neptunium
39	Y	Yttrium	Yttrium	94	Pu	Plutonium	Plutonium
40	Zr	Zirkonium	Zirconium	95	Am	Americium	Américium
41	Nb	Niob	Niobium	96	Cm	Curium	Curium
42	Mo	Molybdän	Molybdène	97	Bk	Berkelium	Berkélium
43	Tc	Technetium	Technétium	98	Cf	Californium	Californium
44	Ru	Ruthenium	Ruthénium	99	Es	Einsteinium	Einsteinium
45	Rh	Rhodium	Rhodium	100	Fm	Fermium	Fermium
46	Pd	Palladium	Palladium	101	Md	Mendelevium	Mendélévium
47	Ag	Silber	Argent	102	No	Nobelium	Nobélium
48	Cd	Kadmium	Cadmium	103	Lr	Lawrencium	Lawrencium
49	In	Indium	Indium	104	Rf	Rutherfordium	Rutherfordium
50	Sn	Zinn	Étain	105	Db	Dubnium	Dubnium
51	Sb	Antimon	Antimoine	106	Sg	Seaborgium	Seaborgium
52	Te	Tellur	Tellure	107	Bh	Bohrium	Bohrium
53	I	Jod	Iode	108	Hs	Hassium	Hassium
54	Xe	Xenon	Xénon	109	Mt	Meitnerium	Meitnérium
55	Cs	Cäsium	Césium				