EXAMEN DE FIN D'ÉTUDES SECONDAIRES — Sessions 2024 QUESTIONNAIRE Date: 07.06.24 Horaire: 08:15 - 10:45 Durée: 150 minutes Discipline: PHYSI Type: écrit Section(s): GIG Numéro du candidat:

1 Travail pratique: Lentilles 12 points (TP:2 + TP:3 + TP:2 + TP:3 + TP:2)

Pendant le TP « Lentilles », un groupe mesure les valeurs suivantes pour une lentille convergente marquée 5,00 cm par le fabricant :

Taille-image	Distance-image	Taille-objet	Distance-objet
en cm	en cm	en cm	en cm
4,7	19,5	1,9	7,0
2,3	11,8	1,9	9,0
1,4	9,2	1,9	12,0
0,9	8,1	1,9	15,0
0,6	7,0	1,9	20,0

- 1.1 Recopiez les valeurs nécessaires et ajoutez les colonnes qui permettent de faire un graphique de $\frac{1}{h}$ en fonction de $\frac{1}{a}$.
- 1.2 Représentez graphiquement $\frac{1}{b}$ en fonction de $\frac{1}{g}$.
- 1.3 Décrivez la forme du graphique.

Démontrez que la pente du graphique devrait avoir la valeur -1.

TP:2

- 1.4 Déterminez la distance focale de la lentille à l'aide de votre graphique. Justifiez votre démarche.
- 1.5 Déterminez l'écart absolu et l'écart relatif en pourcent de votre distance focale par rapport à la distance focale donnée par le fabricant.

2 Couches minces

11 points (T:3 + T:3 + E:2 + E:3)

Pour rendre des lunettes anti-reflets, on applique une couche mince avec un indice de réfraction $n_c=1,22$ sur le verre $(n_v=1,50)$. On veut que la fréquence visible moyenne de la lumière $(5,22\cdot10^{14} \, \text{Hz})$ soit supprimée dans la réflexion si les lunettes se trouvent dans l'air.

- 2.1 Faites une esquisse de la situation.
 - Dessinez sur votre esquisse en tant que rayons, les ondes lumineuses nécessaires pour expliquer le phénomène d'interférence. Décrivez brièvement l'origine de la différence de marche entre les ondes lumineuses interférentes.
- 2.2 Dérivez une formule qui met en évidence un rapport entre l'épaisseur de la couche et la longueur d'onde à supprimer.
- 2.3 Déterminez l'épaisseur minimale de la couche.

E:2

E:3

E:2

- 2.4 Est-ce qu'avec l'épaisseur minimale de la couche, la fréquence de 5,22· 10^{14} Hz est aussi supprimée si les lunettes se trouvent sous l'eau ($n_e=1,33$) ?
 - Justifiez votre réponse soit par un calcul soit par un raisonnement physique.

3 Théorie de la relativité

9 points (E:2 + E:5 + E:2)

Une particule α est accélérée du repos par une tension, de sorte qu'elle reçoit une énergie cinétique de 1,18 GeV.

- 3.1 Calculez la tension d'accélération que la particule α a dû parcourir.
- 3.2 Calculez la vitesse de la particule α de manière relativiste.
- 3.3 Est-ce que la vitesse finale est divisée par deux si la tension d'accélération est divisée par deux? Justifiez votre réponse soit par un calcul soit par un raisonnement physique.

4 Radioactivité

16 points (T:2 + T:5 + T:2 + T:1 + E:3 + E:3)

Définissez l'activité d'une source radioactive. 4.1

T:2

- 4.2 Dérivez la loi fondamentale de la désintégration radioactive en partant de la définition précédente.
- 4.3 Définissez la demi-vie et établissez le rapport entre la demi-vie et la constante de désintégration.

Dans l'atmosphère il y a un équilibre entre le carbone-14 radioactive et le carbone-12 stable de sorte qu'il y a 15,3 désintégrations par minute pour un gramme de carbone. On retrouve cet équilibre aussi dans les organismes vivants. Après la mort de l'organisme, le carbone n'est plus absorbé l'activité diminue temps. demi-vie et au cours du La est de 5730 a.

Dans un échantillon d'un vieux morceau de bois il y a 5,0 g de carbone. Ces 5,0 g de carbone contiennent 0,44·10⁻¹² g de ¹⁴C.

- 4.4 14 C se désintègre en dégageant un rayonnement β^- . Donnez l'équation de désintégration pour la désintégration de ¹⁴C. T:1
- 4.5 Déterminez l'activité du morceau de bois aujourd'hui, par gramme de carbone. E:3
- 4.6 Déterminez l'âge du morceau de bois à l'aide de l'activité du morceau aujourd'hui.

E:3

T:3

5 Mécanique quantique

12 points (T:3 + T:3 + E:3 + E:3)

- 5.1 Expliquez l'effet photoélectrique à l'aide de l'hypothèse des photons. Montrez aussi que pour un métal donné, l'énergie cinétique des électrons libérés ne dépend que de la fréquence de la lumière.
- 5.2 Expliquez à l'aide d'une observation pourquoi l'effet photoélectrique ne peut pas être expliqué par la théorie ondulatoire de la lumière. T:3

Une cellule photoélectrique est irradiée par un laser de longueur d'onde 540 nm. Des électrons sont alors émis avec une énergie cinétique maximale de 0,843 eV.

- Déterminez la longueur d'onde de seuil pour la cellule photoélectrique. 5.3
- 5.4 Le laser a une puissance de 1 mW. Seulement 80 % des photons émises par le laser libèrent des électrons de la cellule photoélectrique.
 - Déterminez l'intensité maximale du courant photoélectrique.

E:3

E:3

Constantes physiques

Constante physique	Symbole	Valeur	Unité
nombre d'Avogadro	N _A	$6,022 \cdot 10^{23}$	mol^{-1}
charge élémentaire	e	$1,602 \cdot 10^{-19}$	С
vitesse de la lumière (*)	С	$2,998 \cdot 10^8$	$m \cdot s^{-1}$
constante de Planck	h	$6,626 \cdot 10^{-34}$	$J \cdot s$
permittivité du vide	٤0	$8,854 \cdot 10^{-12}$	$C\cdot V^{-1}\cdot m^{-1}$
masse au repos de l'électron	$m_{ m e}$	$9,109 \cdot 10^{-31}$	kg
		= 0,5110	MeV/c^2
masse au repos du proton	$m_{ m p}$	$1,673 \cdot 10^{-27}$	kg
		= 938,3	MeV/c^2
masse au repos du neutron	m_{n}	$1,675 \cdot 10^{-27}$	kg
		= 939,6	MeV/c^2
masse au repos d'une particule α	m_{lpha}	$6,645 \cdot 10^{-27}$	kg
· 		$= 3,727 \cdot 10^3$	MeV / c²

Conversion d'unités en dehors du système SI								
unité de masse atomique	1 u	$1,6605 \cdot 10^{-27}$	kg					
électron-volt	1 eV	$1,602 \cdot 10^{-19}$	J					
année	1 a	365,25	d (jours)					

(*) **Rmarque:** Pour la vitesse de la lumière, on peut utiliser la valeur $c=3.00\cdot 10^8~{\rm m/s}$ dans les calculs.

Formules trigonométriques

$$\sin^2 x + \cos^2 x = 1 \qquad \tan x = \frac{\sin x}{\cos x}$$

$$\cos^2 x = \frac{1}{1 + \tan^2 x} \qquad \sin^2 x = \frac{\tan^2 x}{1 + \tan^2 x} \qquad 1 + \tan^2 x = \frac{1}{\cos^2 x}$$

$$\sin(-x) = -\sin(x) \qquad \sin(\pi - x) = \sin(x) \qquad \sin(\pi + x) = -\sin(x)$$

$$\cos(-x) = \cos(x) \qquad \cos(\pi - x) = -\cos(x) \qquad \cos(\pi + x) = -\cos(x)$$

$$\tan(-x) = -\tan(x) \qquad \tan(\pi - x) = -\tan(x) \qquad \tan(\pi + x) = \tan(x)$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos(x) \qquad \cos\left(\frac{\pi}{2} + x\right) = \cos(x)$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin(x) \qquad \cos\left(\frac{\pi}{2} + x\right) = -\sin(x)$$

$$\tan\left(\frac{\pi}{2} - x\right) = \cot(x) \qquad \tan\left(\frac{\pi}{2} + x\right) = \cot(x)$$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y \qquad \tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y \qquad \tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

$$\sin 2x = 2\sin x \cos x \qquad 2\cos^2 x = 1 + \cos 2x$$

$$\cos 2x = \cos^2 x - \sin^2 x \qquad 2\sin^2 x = 1 - \cos 2x$$

$$\sin 2x = \frac{2\tan x}{1 + \tan^2 x} \qquad \cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x} \qquad \tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

$$\sin 3x = 3\sin x - 4\sin^2 x \qquad \cos 3x = -3\cos x + 4\cos^3 x$$

$$\sin x + \sin y = 2\sin\left(\frac{x + y}{2}\right)\cos\left(\frac{x - y}{2}\right) \qquad \tan x + \tan y = \frac{\sin(x + y)}{\cos x \cos y}$$

$$\sin x - \sin y = 2\sin\left(\frac{x + y}{2}\right)\cos\left(\frac{x - y}{2}\right) \qquad \tan x - \tan y = \frac{\sin(x - y)}{\cos x \cos y}$$

$$\cos x - \cos y = -2\sin\left(\frac{x + y}{2}\right)\sin\left(\frac{x - y}{2}\right)$$

$$\sin x \cos y = \frac{1}{2}[\cos(x + y) + \sin(x - y)]$$

$$\cos x \cos y = \frac{1}{2}[\cos(x + y) + \cos(x - y)]$$

$$\sin x \sin y = \frac{1}{2}[\cos(x + y) + \cos(x - y)]$$

$$\sin x \sin y = \frac{1}{2}[\cos(x - y) - \cos(x + y)]$$

I	П											Ш	IV	V	VI	VII	VIII
1,0		•															4,0
H																	He 2
6,9	9,0											10,8	12,0	14,0	16,0	19,0	20,2
Li	Ве											В	C	N	O	F	Ne
3	4											5	6	7	8	9	10
23,0	24,3											27,0	28,1	31,0	32,1	35,5	39,9
Na	Mg	IIIA	IVA	VA	VIA	VIIA		VIIIA		IA	IIA	Al	Si	P	S 16	Cl	Ar
39,1	40,1	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85,5	87,6	88,9	91,2	92,9	95,9	(98,6)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132,9	137,3	138,9	178,5	180,9	183,9	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	(209)	(210)	(222)
Cs	Ва	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	<i>7</i> 9	80	81	82	83	84	85	86
(223)	226,0	227,0	(261)	(262)	(263)												
Fr	Ra	Ac	Rf	На	Sg												
							ı		1		1	1		1		1	1 1
87	88	89	104	105	106												

152,0

Eu

63

(243)

Am 95 157,3

64

(247)

Cm %

Gd

158,9

65

(247)

Bk 97__

Tb

162,5

Dy

66

98

(251)

Cf

164,9

67

99

(254)

Es

Но

167,3

Er

68

(257)

100

Fm

168,9

69

(258)

101

Md

Tm

173,0

Yb

70

(259)

No 102 175,0

Lu

(260)

Lr

103

71

140,1

58

232,0

Th

Ce

140,9

Pr

59

231,0

Pa | 91 144,2

60

92

238,0

U

Nd

(145)

61

93

237,0

Np

Pm

150,4

62

(244)

Pu 94

Sm

Tableau périodique des éléments

Z		Element	Élément	z		Element	Élément
1	Н	Wasserstoff	Hydrogène	56	Ba	Barium	Baryum
2	He	Helium	Hélium	57	La	Lanthan	Lanthane
3	Li	Lithium	Lithium	58	Ce	Cer	Cérium
4	Be	Beryllium	Béryllium	59	Pr	Praseodym	Praséodyme
5	В	Bor	Bore	60	Nd	Neodym	Néodyme
6	C	Kohlenstoff	Carbone	61	Pm	Promethium	Prométhium
7	N	Stickstoff	Azote	62	Sm	Samarium	Samarium
8	O	Sauerstoff	Oxygène	63	Eu	Europium	Europium
9	F	Fluor	Fluor	64	Gd	Gadolinium	Gadolinium
10	Ne	Neon	Néon	65	Tb	Terbium	Terbium
11	Na	Natrium	Sodium	66	Dy	Dysprosium	Dysprosium
12	Mg	Magnesium	Magnésium	67	Но	Holmium	Holmium
13	Αĺ	Aluminium	Aluminium	68	Er	Erbium	Erbium
14	Si	Silizium	Silicium	69	Tm	Thulium	Thulium
15	P	Phosphor	Phosphore	70	Yb	Ytterbium	Ytterbium
16	S	Schwefel	Soufre	71	Lu	Lutetium	Lutécium
17	C1	Chlor	Chlore	72	Hf	Hafnium	Hafnium
18	Ar	Argon	Argon	73	Ta	Tantal	Tantale
19	K	Kalium	Potassium	74	W	Wolfram	Tungstène
20	Ca	Kalzium	Calcium	75	Re	Rhenium	Rhénium
21	Sc	Scandium	Scandium	76	Os	Osmium	Osmium
22	Ti	Titan	Titane	77	Ir	Iridium	Iridium
23	V	Vanadium	Vanadium	78	Pt	Platin	Platine
24	Cr	Chrom	Chrome	79	Au	Gold	Or
25	Mn	Mangan	Manganèse	80	Hg	Quecksilber	Mercure
26	Fe	Eisen	Fer	81	ΤĪ	Thallium	Thallium
27	Co	Kobalt	Cobalt	82	Pb	Blei	Plomb
28	Ni	Nickel	Nickel	83	Bi	Bismut	Bismuth
29	Cu	Kupfer	Cuivre	84	Po	Polonium	Polonium
30	Zn	Zink	Zinc	85	At	Astat	Astate
31	Ga	Gallium	Gallium	86	Rn	Radon	Radon
32	Ge	Germanium	Germanium	87	Fr	Francium	Francium
33	As	Arsen	Arsenic	88	Ra	Radium	Radium
34	Se	Selen	Sélénium	89	Ac	Actinium	Actinium
35	Br	Brom	Brome	90	Th	Thorium	Thorium
36	Kr	Krypton	Krypton	91	Pa	Protactinium	Protactinium
37	Rb	Rubidium	Rubidium	92	U	Uran	Uranium
38	Sr	Strontium	Strontium	93	Np	Neptunium	Neptunium
39	Y	Yttrium	Yttrium	94	Pu	Plutonium	Plutonium
40	Zr	Zirkonium	Zirconium	95	Am	Americium	Américium
41	Nb	Niob	Niobium	96	Cm	Curium	Curium
42	Mo	Molybdän	Molybdène	97	Bk	Berkelium	Berkélium
43	Tc	Technetium	Technétium	98	$\mathbf{C}\mathbf{f}$	Californium	Californium
44	Ru	Ruthenium	Ruthénium	99	Es	Einsteinium	Einsteinium
45	Rh	Rhodium	Rhodium	100	Fm	Fermium	Fermium
46	Pd	Palladium	Palladium	101	Md	Mendelevium	Mendélévium
47	Ag	Silber	Argent	102	No	Nobelium	Nobélium
48	Cd	Kadmium	Cadmium	103	Lr	Lawrencium	Lawrencium
49	In	Indium	Indium	104	Rf	Rutherfordium	Rutherfordium
50	Sn	Zinn	Étain	105	Db	Dubnium	Dubnium
51	Sb	Antimon	Antimoine	106	Sg	Seaborgium	Seaborgium
52	Te	Tellur	Tellure	107	Bh	Bohrium	Bohrium
53	I	Jod	Iode	108	Hs	Hassium	Hassium
54	Xe	Xenon	Xénon	109	Mt	Meitnerium	Meitnérium
55	Cs	Cäsium	Césium				