

1 Praktikum: Linsen 12 Punkte (P:2 + P:3 + P:2 + P:3 + P:2)

Eine Gruppe erhält im Praktikum "Linsen" folgende Werte für eine Sammellinse mit dem Herstellerwert von 5,00 cm:

Bildgröße	Bildweite	Gegenstandsgröße	Gegenstandsweite
in cm	in cm	in cm	in cm
4,7	19,5	1,9	7,0
2,3	11,8	1,9	9,0
1,4	9,2	1,9	12,0
0,9	8,1	1,9	15,0
0,6	7,0	1,9	20,0

- 1.1 Schreiben Sie die benötigten Werte ab und ergänzen Sie die Tabelle mit den Spalten, die es erlauben, eine Grafik von $\frac{1}{h}$ in Funktion von $\frac{1}{a}$ zu erstellen.
- 1.2 Erstellen Sie die Grafik von $\frac{1}{b}$ in Funktion von $\frac{1}{g}$.
- 1.3 Beschreiben Sie die Form der Grafik.Zeigen Sie auf, dass die Steigung der Grafik den Wert 1 haben müsste.P:2
- 1.4 Bestimmen Sie, mit Hilfe der Grafik, die Brennweite der Linse. Begründen Sie Ihre Vorgehensweise.
- 1.5 Bestimmen Sie die absolute Abweichung und die relative Abweichung in Prozent von Ihrer Brennweite zum Herstellerwert.

2 Dünne Schichten

11 Punkte (T:3 + T:3 + A:2 + A:3)

Um eine Brille zu entspiegeln, wird eine dünne Schicht der Brechzahl $n_S=1,22$ auf das Glas $(n_G=1,50)$ aufgetragen. Die mittlere sichtbare Frequenz des Lichtes $(5,22\cdot10^{14}\,\text{Hz})$ soll dadurch in der Spiegelung ausgelöscht werden, wenn die Brille sich im Medium Luft befindet.

- 2.1 Erstellen Sie eine Skizze der Situation.
 - Zeichnen Sie darauf als Strahlen die Lichtwellen ein, welche benötigt werden, um die Interferenzerscheinung zu erklären. Beschreiben Sie dabei kurz, wie der Gangunterschied zwischen den interferierenden Lichtwellen zustande kommt.
- 2.2 Leiten Sie eine Formel her, welche einen Zusammenhang zwischen der Dicke der Schicht und der auszulöschenden Wellenlänge aufzeigt.
- 2.3 Bestimmen Sie die minimale Dicke der Schicht.

A:2

2.4 Wird bei der minimalen Dicke der Schicht die Frequenz von 5,22· 10^{14} Hz auch noch ausgelöscht, wenn die Brille sich im Wasser ($n_W = 1,33$) befindet?

Begründen Sie ihre Antwort entweder rechnerisch oder durch eine physikalische Argumentation.

3 Relativitätstheorie

9 Punkte (A:2 + A:5 + A:2)

Ein α -Teilchen wird aus der Ruhe durch eine Spannung beschleunigt, so dass es eine kinetische Energie von 1,18 GeV erhält.

- 3.1 Berechnen Sie, welche Beschleunigungsspannung das α -Teilchen durchlaufen muss.
- 3.2 Berechnen Sie relativistisch, welche Geschwindigkeit das α -Teilchen dabei erhält. A:5
- 3.3 Wird bei halber Beschleunigungsspannung die Endgeschwindigkeit auch halbiert? Begründen Sie ihre Antwort entweder rechnerisch oder durch eine physikalische Argumentation. A:2

4 Radioaktivität

16 Punkte (T:2 + T:5 + T:2 + T:1 + A:3 + A:3)

4.1 Definieren Sie die Aktivität einer radioaktiven Quelle.

T:2

- 4.2 Erstellen Sie, ausgehend von der vorherigen Definition, das Grundgesetz des radioaktiven Zerfalles.
- 4.3 Definieren Sie die Halbwertszeit und stellen Sie den Zusammenhang zwischen der Halbwertszeit und der Zerfallskonstante her.

In der Atmosphäre stellt sich zwischen dem radioaktiven Kohlenstoff–14 und dem stabilen Kohlenstoff–12 ein Gleichgewicht ein, so dass pro Gramm Kohlenstoff 15,3 Zerfälle pro Minute stattfinden. Dieses Verhältnis findet man auch in lebenden Organismen wieder. Beim Absterben des Organismus hört jegliche Aufnahme von Kohlenstoff auf und die Aktivität nimmt im Lauf der Zeit ab. Die Halbwertszeit vom ¹⁴C beträgt dabei 5730 a.

In einer Probe eines alten Holzstückes sind 5,0 g Kohlenstoff enthalten. Die 5,0 g Kohlenstoff enthalten $0.44 \cdot 10^{-12}$ g 14 C.

- 4.4 14 C zerfällt mit einer β^- Strahlung. Geben Sie die Zerfallsgleichung beim 14 C-Zerfall an. T:1
- 4.5 Bestimmen Sie die heutige Aktivität des Holzstückes, pro Gramm Kohlenstoff. A:3
- 4.6 Bestimmen Sie das Alter des Holzstückes mit Hilfe der heutigen Aktivität des Holzstückes.

A:3

5 Quantenmechanik

12 Punkte (T:3 + T:3 + A:3 + A:3)

- 5.1 Erklären Sie den Photoeffekt mit Hilfe der Photonenhypothese.
 - Zeigen Sie dabei auch, dass die kinetische Energie der ausgeschlagenen Elektronen für ein bestimmtes Metall nur von der Lichtfrequenz abhängt.
- 5.2 Erläutern Sie anhand einer Beobachtung, warum der Photoeffekt sich nicht mir der Wellentheorie des Lichtes erklären lässt.

Eine Photozelle wird mit einem Laser der Wellenlänge 540 nm bestrahlt. Dabei werden Elektronen mit einer maximalen kinetischen Energie von 0,843 eV emittiert.

5.3 Bestimmen Sie die Grenzwellenlänge der Photozelle.

A:3

- 5.4 Der Laser hat eine Leistung von 1 mW. Nur 80 % der ausgestrahlten Photonen des Lasers setzen Elektronen aus der Photozelle frei.
 - Bestimmen Sie die Stärke des maximalen Photostromes.

A:3

Physikalische Konstanten

Physikalische Konstante	Symbol	Wert	Einheit
Avogadro-Konstante	N _A	$6,022 \cdot 10^{23}$	mol ⁻¹
Elementarladung	e	$1,602 \cdot 10^{-19}$	С
Lichtgeschwindigkeit (*)	С	$2,998 \cdot 10^8$	$m \cdot s^{-1}$
Planck-Konstante	h	$6,626 \cdot 10^{-34}$	$J \cdot s$
Elektrische Feldkonstante	٤0	$8,854 \cdot 10^{-12}$	$C \cdot V^{-1} \cdot m^{-1}$
Ruhemasse des Elektrons	$m_{ m e}$	$9,109 \cdot 10^{-31}$	kg
		= 0,5110	MeV/c^2
Ruhemasse des Protons	m_{p}	$1,673 \cdot 10^{-27}$	kg
		= 938,3	MeV / c^2
Ruhemasse des Neutrons	m_{n}	$1,675 \cdot 10^{-27}$	kg
		= 939,6	MeV / c^2
Ruhemasse des α-Teilchens	m_{lpha}	$6,645 \cdot 10^{-27}$	kg
		$= 3,727 \cdot 10^3$	MeV / c²

Umwandlung von Einheiten außerhalb des SI-Systems									
Atomare Masseneinheit	1 u	$1,6605 \cdot 10^{-27}$	kg						
Elektronvolt	1 eV	$1,602 \cdot 10^{-19}$	J						
Jahr	1 a	365,25	d (Tage)						

(*) **Bemerkung:** Für die Lichtgeschwindigkeit kann in den Rechnungen der Wert $c=3,00\cdot 10^8 \, \mathrm{m/s}$ verwendet werden.

Formelsammlung Trigonometrie

$$\sin^2 x + \cos^2 x = 1 \qquad \tan x - \frac{\sin x}{\cos x}$$

$$\cos^2 x = \frac{1}{1 + \tan^2 x} \qquad \sin^2 x - \frac{\tan^2 x}{1 + \tan^2 x} \qquad 1 + \tan^2 x - \frac{1}{\cos^2 x}$$

$$\sin(-x) = -\sin(x) \qquad \sin(\pi - x) = \sin(x) \qquad \sin(\pi + x) = -\sin(x)$$

$$\cos(-x) = \cos(x) \qquad \cos(\pi - x) = -\cos(x) \qquad \cos(\pi + x) = -\cos(x)$$

$$\tan(-x) = -\tan(x) \qquad \tan(\pi - x) = -\tan(x) \qquad \tan(\pi + x) = \tan(x)$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos(x) \qquad \cos\left(\frac{\pi}{2} + x\right) = \cos(x)$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin(x) \qquad \cos\left(\frac{\pi}{2} + x\right) = -\cot(x)$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cot(x) \qquad \tan\left(\frac{\pi}{2} + x\right) = -\cot(x)$$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y \qquad \tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y \qquad \tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

$$\sin 2x = 2\sin x \cos x \qquad 2\cos^2 x = 1 + \cos 2x$$

$$\cos 2x = \cos^2 x - \sin^2 x \qquad 2\sin^2 x = 1 - \cos 2x$$

$$\sin 2x = \frac{2\tan x}{1 + \tan^2 x} \qquad \cos 2x - \frac{1 - \tan^2 x}{1 + \tan^2 x} \qquad \tan 2x - \frac{2\tan x}{1 - \tan^2 x}$$

$$\sin 2x = 2\sin\left(\frac{x + y}{2}\right)\cos\left(\frac{x - y}{2}\right) \qquad \tan x + \tan y = \frac{\sin(x + y)}{\cos x \cos y}$$

$$\sin x - \sin y = 2\sin\left(\frac{x - y}{2}\right)\cos\left(\frac{x - y}{2}\right) \qquad \tan x - \tan y = \frac{\sin(x - y)}{\cos x \cos y}$$

$$\cos x - \cos y = -2\sin\left(\frac{x + y}{2}\right)\cos\left(\frac{x - y}{2}\right)$$

$$\sin x \cos y = \frac{1}{2}\left[\sin(x + y) + \sin(x - y)\right]$$

$$\cos x \cos y = \frac{1}{2}\left[\cos(x + y) + \cos(x - y)\right]$$

$$\sin x \sin y = \frac{1}{2}\left[\cos(x + y) + \cos(x - y)\right]$$

$$\sin x \sin y = \frac{1}{2}\left[\cos(x - y) - \cos(x - y)\right]$$

Periodensystem der Elemente

т	п	1										ш	13.7	17	171	3711	37111
I	II	J										III	IV	V	VI	VII	VIII
1,0																	4,0
Н																	He
1		1											I	I	I	I	2
6,9	9,0											10,8	12,0	14,0	16,0	19,0	20,2
Li	Ве											В	C	N	О	F	Ne
3	4											5	6	7	8	9	10
23,0	24,3											27,0	28,1	31,0	32,1	35,5	39,9
Na	Mg			l								Al	Si	P	S	Cl	Ar
11	12	IIIA	IVA	VA	VIA	VIIA		VIIIA		IA	IIA	13	14	15	16	17	18
39,1	40,1	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58 <i>,</i> 7	63,5	65,4	69,7	72,6	74,9	<i>7</i> 9,0	<i>7</i> 9,9	83,8
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85,5	87,6	88,9	91,2	92,9	95,9	(98,6)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132,9	137,3	138,9	1 7 8,5	180,9	183,9	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	(209)	(210)	(222)
Cs	Ва	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56	57	<i>7</i> 2	73	74	75	76	77	<i>7</i> 8	<i>7</i> 9	80	81	82	83	84	85	86
(223)	226,0	227,0	(261)	(262)	(263)												
Fr	Ra	Ac	Rf	На	Sg												
87	88	89	104	105	106												
																	•

140,1	140,9	144,2	(145)	150,4	152,0	157,3	158,9	162,5	164,9	167,3	168,9	173,0	175,0
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	<i>7</i> 0	71
232,0	231,0	238,0	237,0	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

Z		Element	Élément	z		Element	Élément
1	Н	Wasserstoff	Hydrogène	56	Ba	Barium	Baryum
2	He	Helium	Hélium	57	La	Lanthan	Lanthane
3	Li	Lithium	Lithium	58	Ce	Cer	Cérium
4	Be	Beryllium	Béryllium	59	Pr	Praseodym	Praséodyme
5	В	Bor	Bore	60	Nd	Neodym	Néodyme
6	C	Kohlenstoff	Carbone	61	Pm	Promethium	Prométhium
7	N	Stickstoff	Azote	62	Sm	Samarium	Samarium
8	O	Sauerstoff	Oxygène	63	Eu	Europium	Europium
9	F	Fluor	Fluor	64	Gd	Gadolinium	Gadolinium
10	Ne	Neon	Néon	65	Tb	Terbium	Terbium
11	Na	Natrium	Sodium	66	Dy	Dysprosium	Dysprosium
12	Mg	Magnesium	Magnésium	67	Но	Holmium	Holmium
13	Αĺ	Aluminium	Aluminium	68	Er	Erbium	Erbium
14	Si	Silizium	Silicium	69	Tm	Thulium	Thulium
15	P	Phosphor	Phosphore	70	Yb	Ytterbium	Ytterbium
16	S	Schwefel	Soufre	71	Lu	Lutetium	Lutécium
17	C1	Chlor	Chlore	72	Hf	Hafnium	Hafnium
18	Ar	Argon	Argon	73	Ta	Tantal	Tantale
19	K	Kalium	Potassium	74	W	Wolfram	Tungstène
20	Ca	Kalzium	Calcium	75	Re	Rhenium	Rhénium
21	Sc	Scandium	Scandium	76	Os	Osmium	Osmium
22	Ti	Titan	Titane	77	Ir	Iridium	Iridium
23	V	Vanadium	Vanadium	78	Pt	Platin	Platine
24	Cr	Chrom	Chrome	79	Au	Gold	Or
25	Mn	Mangan	Manganèse	80	Hg	Quecksilber	Mercure
26	Fe	Eisen	Fer	81	ΤĪ	Thallium	Thallium
27	Co	Kobalt	Cobalt	82	Pb	Blei	Plomb
28	Ni	Nickel	Nickel	83	Bi	Bismut	Bismuth
29	Cu	Kupfer	Cuivre	84	Po	Polonium	Polonium
30	Zn	Zink	Zinc	85	At	Astat	Astate
31	Ga	Gallium	Gallium	86	Rn	Radon	Radon
32	Ge	Germanium	Germanium	87	Fr	Francium	Francium
33	As	Arsen	Arsenic	88	Ra	Radium	Radium
34	Se	Selen	Sélénium	89	Ac	Actinium	Actinium
35	Br	Brom	Brome	90	Th	Thorium	Thorium
36	Kr	Krypton	Krypton	91	Pa	Protactinium	Protactinium
37	Rb	Rubidium	Rubidium	92	U	Uran	Uranium
38	Sr	Strontium	Strontium	93	Np	Neptunium	Neptunium
39	Y	Yttrium	Yttrium	94	Pu	Plutonium	Plutonium
40	Zr	Zirkonium	Zirconium	95	Am	Americium	Américium
41	Nb	Niob	Niobium	96	Cm	Curium	Curium
42	Mo	Molybdän	Molybdène	97	Bk	Berkelium	Berkélium
43	Tc	Technetium	Technétium	98	$\mathbf{C}\mathbf{f}$	Californium	Californium
44	Ru	Ruthenium	Ruthénium	99	Es	Einsteinium	Einsteinium
45	Rh	Rhodium	Rhodium	100	Fm	Fermium	Fermium
46	Pd	Palladium	Palladium	101	Md	Mendelevium	Mendélévium
47	Ag	Silber	Argent	102	No	Nobelium	Nobélium
48	Cd	Kadmium	Cadmium	103	Lr	Lawrencium	Lawrencium
49	In	Indium	Indium	104	Rf	Rutherfordium	Rutherfordium
50	Sn	Zinn	Étain	105	Db	Dubnium	Dubnium
51	Sb	Antimon	Antimoine	106	Sg	Seaborgium	Seaborgium
52	Te	Tellur	Tellure	107	Bh	Bohrium	Bohrium
53	I	Jod	Iode	108	Hs	Hassium	Hassium
54	Xe	Xenon	Xénon	109	Mt	Meitnerium	Meitnérium
55	Cs	Cäsium	Césium				