EXAMEN DE FIN D'ÉTUDES SECONDAIRES – Sessions 2024

QUESTIONNAIRE

Date :	19.09.24		Horaire :	08:15 - 11:15		Durée :	180 minutes
Discipline :	MATHE	Туре :	écrit	Section(s) :		GSN	
					A1 / 1		

Numéro du candidat :

<u>Question 1</u> (4+4 = 8 points)

Résoudre dans \mathbb{R} les (in)équation(s) suivantes :

1)
$$(-e^{3x} + 1)(2 - e^{-2x}) \ge 0$$

2)
$$\ln(x) - 2\ln(x - 4) = -\ln 2$$

Question 2 (1+2=3 points)

Déterminer les limites suivantes :

$$1) \quad \lim_{x \to +\infty} \frac{x}{e^x - 2}$$

2)
$$\lim_{x \to (e^5)^+} \frac{1-3x}{5-\ln x}$$

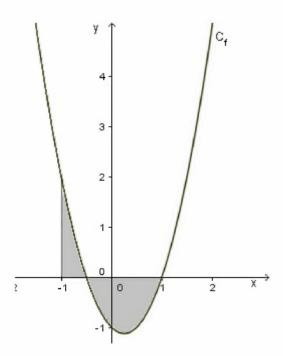
Question 3 (4+3+2=9 points)

Soit la fonction f définie sur $D_f =]0$; $+\infty[$ par $f(x) = \ln\left(\frac{e^{x}-1}{2+3e^{x}}\right)$:

- 1) Déterminer les limites de f aux bornes de son domaine de définition et interpréter graphiquement.
- 2) Établir le tableau de variation complet (limites comprises) de f sur \mathcal{D}_f .
- 3) Déterminer une équation de la tangente T à \mathcal{C}_f au point d'abscisse $\ln(2)$.

Question 4 (3 points)

Déterminer le signe de f(x) sur $D_f=\mathbb{R}$, à partir de ses variations sur D_f .


$$f(x) = 3x^2 - 1 + e^{3x^2}$$

Question 5 (1+3+3+3=10 points)

Vrai ou faux. Justifier.

- 1) « $\forall x \in \mathbb{R}$, $e^{\ln(5x)^2} = (5x)^2$. »
- 2) La suite (u_n) est définie par $u_0=3$ et $\forall n\in\mathbb{N},\,u_{n+1}=\sqrt{5u_n}.$ La suite (v_n) est définie sur \mathbb{N} par $v_n=\ln(u_n)-\ln(5).$ « La suite (v_n) est une suite géométrique de raison $\frac{1}{2}$. »
- 3) « La suite (u_n) définie sur \mathbb{N}^* par $u_n=2n-\ln(2n)$ est une suite croissante. »
- 4) Soit A l'aire (en unités d'aire) du domaine gris telle que C_f est la courbe représentative de la fonction f définie par $f(x) = 2x^2 x 1$ et telle que C_f coupe l'axe des abscisses en x = -0.5 et en x = 1.

« L'aire A est égale à $\frac{17}{12}$ u.a. .»

Question 6 (2+(1+1)+2+2=8 points)

Dans une usine, un four cuit des céramiques à la température de 1000°C. À la fin de la cuisson, il est éteint et il refroidit. On s'intéresse à la phase de refroidissement du four, qui débute dès l'instant où il est éteint. La température du four est exprimée en degrés Celsius (°C).

On note t le temps (en heure) écoulé depuis l'instant où le four a été éteint. La température du four (en degré Celsius) à l'instant t est donnée par la fonction définie, pour tout nombre réel t positif, par : $f(t) = a \cdot e^{-\frac{t}{5}} + b$, où a et b sont deux nombres réels.

1) Déterminer les réels a et b sachant que : $f'(t) + \frac{1}{5}f(t) = 4$ et qu'initialement la température du four est de 1000°C.

Dans la suite, on admet que a = 980 et b = 20.

2)

- a. Démontrer que la température du four diminue au fil du temps.
- b. Déterminer la limite de f en $+\infty$, et interpréter dans ce contexte.

La porte du four peut être ouverte sans risque pour les céramiques dès que sa température est inférieure à 70°C. Sinon les céramiques peuvent se fissurer, voire se casser.

- 3) Après combien d'heures le four peut-il être ouvert sans risque pour les céramiques ? Donner la valeur exacte, puis la valeur arrondie à l'heure près.
- 4) La température moyenne (en degré Celsius) du four entre deux instants t_1 et t_2 est donnée par : $\frac{1}{t_2-t_1}\cdot\int_{t_1}^{t_2}f(t)\,dt$.

Calculer la valeur exacte, puis la valeur arrondie au dixième près, de la température moyenne du four sur les 15 premières heures de refroidissement.

Question 7 (2+3+2=7 points)

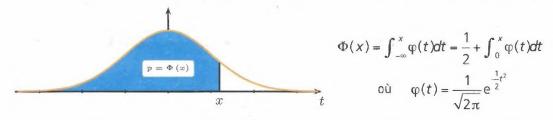
- 1) Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = \frac{1}{x} + \frac{2}{\sqrt{x}} e^x + 3$. Déterminer les primitives F de f sur l'intervalle indiqué.
- 2) Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{2}e^x(2e^x 1)^3$. Déterminer la primitive F de f qui s'annule en $\ln\left(\frac{3}{2}\right)$ sur l'intervalle indiqué.
- 3) Calculer, à l'aide d'une primitive, l'intégrale suivante : $\int_1^3 \frac{1}{x} (\ln x)^2 dx$.

Question 8 (1+1+1+1+1=5 points)

Une rame de métro relie deux stations M_1 et M_2 en un temps compris entre 8 et 12 minutes. On note X la durée du trajet, en minutes, lors d'une liaison.

On suppose que X suit la loi uniforme sur [8; 12].

- 1) Quelle est la fonction densité f de la variable aléatoire X?
- 2) Calculer la probabilité que la rame relie les deux stations en exactement 9 minutes.
- 3) Calculer la probabilité que la rame relie les deux stations en moins de 9 min 30 s.
- 4) La rame quitte M_1 à huit heures et un usager arrive en M_2 à 8h11. Quelle est la probabilité que l'usager rate le métro ?
- 5) Calculer la durée moyenne du trajet.


Question 9 (3+4=7 points)

Une entreprise fabrique des brioches en grande quantité.

On pèse les boules de pâte avant cuisson. On note X la variable aléatoire qui, à chaque boule de pâte, associe sa masse en grammes. On admet que X suit la loi normale de moyenne 700 et d'écart-type 20.

- 1) Seules les boules dont la masse est comprise entre 666g et 732g sont acceptées à la cuisson. Quelle est la probabilité qu'une boule, prise au hasard dans la production, soit acceptée à la cuisson ?
- 2) Déterminer le réel positif h, au centième près, afin que l'on ait : $P(700 h \le X \le 700 + h) \ge 0,95$. Interpréter dans ce contexte.

Fonction de répartition de la loi normale $\mathcal{N}(\mathbf{0},\mathbf{1})$

X	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986

Х	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9
Ф(х)	0,9987	0,9990	0,9993	0,9995	0,9997	0,9998	0,9998	0,9999	0,9999	1,0000

Quelques valeurs de Φ^{-1}

р	0,95	0,975	0,99	0,995	0,999	0,9995
$x = \Phi^{-1}(p)$	1,6449	1,9600	2,3263	2,5758	3,0902	3,2905