EXAMEN DE FIN D'ÉTUDES SECONDAIRES – Sessions 2024 QUESTIONNAIRE

Date :	04.06.24		Horaire :	8:15-11:15		Durée :	180 minutes
Discipline :	MATHE	Туре :	écrit	Section(s):		GSN	
					Numéro du car	ndidat :	

Exercice 1 (8 points : 3 + 5)

Résoudre dans \mathbb{R} les (in)équations suivantes :

1.
$$\ln(x) - \frac{2}{\ln(x)} = 1$$

$$2. \quad \frac{1+2e^x}{3-e^x} \ge 1$$

Exercice 2 (13 points : 7 + 4 + 2)

Soit f la fonction définie sur $D_f = \left] -\infty; \ln(3) \right[\cup \left] \ln(5); +\infty \right[$ par

$$f(x) = \ln\left(\frac{-e^x + 5}{-2e^x + 6}\right)$$

et soit $\,C_{_{\! f}}\,$ sa courbe représentative dans un repère orthonormé.

- 1. Calculer les limites de f aux bornes de $D_{\!{}_f}$ et interpréter graphiquement.
- 2. Dresser le tableau de variation complet (limites comprises) de f sur D_{f} .
- 3. À l'aide du tableau de variation, <u>déterminer</u> et <u>justifier</u> le <u>nombre</u> de points d'intersection de C_f avec l'axe des abscisses sur l'intervalle $I = \left| -\infty; \ln(3) \right|$.

Exercice 3 (9 points: 1 + 2 + 3 + 3)

Pour faire des économies, Patrick décide d'éte
indre le chauffage dans son bureau à $21\,\mathrm{h}\,30$.

Il observe alors l'évolution de la température dans son bureau entre $21\,h\,30$ et $6\,h\,30$ le lendemain matin. On désigne par t (exprimé en heures) le temps écoulé depuis $21\,h\,30$ et par f(t) la température du bureau (exprimée en °C) à l'heure t.

La fonction f est définie sur [0;9] par $f(t) = ke^{at} + 15$ $(a, k \in \mathbb{R})$.

- 1. Sachant que la température à $21 \,\mathrm{h}\,30\,$ est égale à $21\,^{\circ}\mathrm{C}$, calculer la valeur exacte du coefficient k.
- 2. Sachant que la température à $6 \, \mathrm{h} \, 30$ le lendemain est égale à $17^{\circ} \, \mathrm{C}$, calculer la valeur exacte du coefficient a.

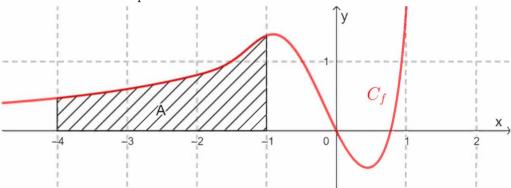
Dans la suite, on utilisera : $a = -\frac{1}{9}\ln(3)$ et k = 6.

- 3. Étudier les variations de la température au fil du temps et interpréter dans le contexte de l'exercice.
- 4. Déterminer à quelle heure (à la minute près) la température est égale à 18°C.

Exercice 4 (8 points: 3+2+3)

Les affirmations suivantes sont-elles vraies ou fausses? Justifier la réponse!

- 1. Affirmation : $\forall x \in \mathbb{R} : \ln\left(e^{-5x} + e^{5x}\right) = 5x + \ln\left(\frac{e^{10x} + 1}{e^{10x}}\right)$.
- 2. Affirmation : $\ll \lim_{x \to 0} \frac{\ln(1-5x)}{4x} = \frac{5}{4}$.
- 3. Soit C_f la courbe représentative dans un repère orthonormé de la fonction f définie sur $\mathbb R$ par $f(x) = \left(x^2 + 2x 6\right)e^x \,.$


Affirmation : « $C_{\!\scriptscriptstyle f}$ admet exactement une tangente horizontale sur $\left[0;+\infty\right[$. »

Exercice 5 (9 points : 4 + 3 + 2)

1. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{-2x}{1+x^2} + x^2 e^{x^3}$.

On donne ci-dessous la courbe représentative $\,C_{_f}\,$ de la fonction $\,f\,$ dans un repère orthonormé.

Calculer l'aire A (en u.a.) du domaine grisé. Donner la valeur exacte de A, puis une valeur arrondie au centième de l'unité d'aire près.

2. Déterminer la primitive G de la fonction g sur l'intervalle $I = \left] -\infty; \frac{3}{4} \right[$ qui s'annule en 1:

$$g(x) = \frac{2}{\left(3 - 4x\right)^3}.$$

3. Démontrer que la fonction m définie par $m(x) = \frac{1}{9}x^3 \left(3\ln(x) - 1\right)$ est une primitive de la fonction n définie par $n(x) = x^2 \ln(x)$ sur l'intervalle \mathbb{R}_+^* .

Exercice 6 (4 points : 1 + 1 + 1 + 1)

La durée d'une communication téléphonique entre Pierre et Paul ne dépasse jamais 1h.

Soit X la variable aléatoire qui indique la durée de communication téléphonique (en minutes) entre Pierre et Paul. On suppose que X suit la <u>loi uniforme</u> sur l'intervalle [0;60].

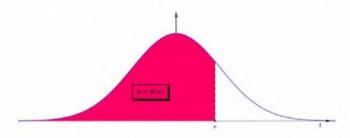
Déterminer la probabilité (donner le résultat sous forme d'une fraction irréductible) que la durée de communication entre Paul et Pierre soit :

- 1. d'une demi-heure;
- 2. d'au maximum trois quarts d'heure ;
- 3. d'au moins 10 min;
- 4. comprise entre $20 \,\mathrm{min}$ et $40 \,\mathrm{min}$.

Exercice 7 [9 points : (2,5 + 2,5) + 4]

Une entreprise produit des bobines de fil pour l'industrie textile.

Soit X la variable aléatoire qui indique la longueur d'une telle bobine (exprimée en mètres).


On suppose que X suit la <u>loi normale</u> N(50;0,04).

- 1. Calculer les probabilités suivantes (valeurs arrondies à 10^{-4} près):
 - a. La longueur de la bobine est inférieure à 50,19 m ;
 - b. La longueur de la bobine est supérieure à $50,16\,\mathrm{m}$.
- 2. Déterminer la valeur du nombre réel positif a tel que $P(50 a \le X \le 50 + a) = 0.9$.

Donner la valeur arrondie à 10^{-4} près.

Interpréter dans le contexte de l'exercice.

Fonction de répartition de la loi normale $\mathcal{N}(0;1)$

$$\Phi(x) = \int_{-\infty}^{x} \varphi(t)dt = \frac{1}{2} + \int_{0}^{x} \varphi(t)dt$$

où
$$\varphi(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}t^2}$$

х	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986

X	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9
$\Phi(x)$	0,9987	0,9990	0,9993	0,9995	0,9997	0,9998	0,9998	0,9999	0,9999	1,0000