EXAMEN DE FIN D'ÉTUDES SECONDAIRES – Sessions 2024

QUESTIONNAIRE

Date :	03.06.24		H orair e :	08:15 - 11:15		Durée :	180 minutes
Disci pline :	MATHE	Туре :	écrit	Section(s):	GSE		
					M		

Numéro du candidat :

Question 1 (2 + 4 = 6 points)

Démontrer les théorèmes suivants :

- a) Pour tout réel a, $\exp(-a) = \frac{1}{\exp(a)}$.
- b) Pour tout entier $p \ge 1$ et tous réels $a_1 > 0$, $a_2 > 0$, ..., $a_n > 0$,

$$\ln(a_1 \cdot a_2 \cdot \ldots \cdot a_p) = \ln a_1 + \ln a_2 + \ldots + \ln a_p$$

Question 2 (5 points)

La fonction f est définie sur [0;4] par :

$$f(x) = \begin{cases} \frac{\sqrt{x+7}-3}{\sqrt{x}-\sqrt{4-x}} & \text{si } x \neq 2\\ \frac{\sqrt{2}}{6} & \text{si } x = 2 \end{cases}$$

Étudier la continuité de f en 2.

Question 3 (4 + 1 = 5 points)

On considère les fonctions f et g définies sur $\mathbb R$ par :

$$f(x) = ae^{4x-4} + be^{1-x}$$
 (a, b \in \mathbb{R}) et $g(x) = x^2 + 3x - 2$

On note \mathscr{C}_f et \mathscr{C}_g leurs représentations graphiques.

- a) Déterminer a et b pour que \mathscr{C}_f et \mathscr{C}_q aient une tangente commune au point d'abscisse 1.
- b) Déterminer l'équation de cette tangente.

Question 4 (6 points)

Résoudre dans \mathbb{R} l'inéquation suivante :

$$\ln(\ln x^2) \leq 0$$

Question 5 (2+1+2+6+2+2=15 points)

Soit f la fonction définie sur \mathbb{R}_+^* par :

$$f(x) = -\frac{1}{x}(x^2 - 3x + 2\ln x)$$

On note \mathscr{C}_f sa représentation graphique.

- a) Calculer les limites de f aux bornes de son domaine et interpréter graphiquement les résultats.
- b) Montrer que \mathscr{C}_t admet une asymptote oblique Δ , dont l'équation est à déterminer.
- c) Déterminer la position de \mathscr{C}_f par rapport à Δ .
- d) Dresser le tableau de variation de f.
- e) Montrer que f admet une unique racine et en déterminer un encadrement à 10^{-2} près.
- f) Tracer Δ et \mathscr{C}_{f} dans un repère orthonormé d'unité 1 sur les deux axes.

Question 6 (5 points)

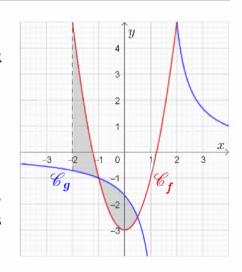
Calculer la valeur exacte de $I = \int_{1}^{e^{\pi}} \cos(\frac{\ln x}{2}) dx$.

Question 7 (4 + 4 = 8 points)

On a représenté ci-contre les fonctions f et g définies sur $D = \mathbb{R}$ et $D_g = \mathbb{R} \setminus \left\{ \frac{3}{2} \right\}$ par :

$$f(x) = 2x^2 - 3$$
 et $g(x) = \frac{5}{2x - 3}$

- a) Calculer les abscisses des points d'intersection de \mathscr{C}_{f} et \mathscr{C}_{q} .
- b) Calculer la valeur exacte de l'aire de la surface grise, délimitée par les courbes \mathscr{C}_f et \mathscr{C}_g , ainsi que les droites d'équation x=-2 et $x=\frac{1}{2}$.



Question 8 (4+2+4=10 points)

On donne les points A(-2;-5;6), B(-3;0;2), C(-2;-1;1), et la droite $d:\begin{cases} x=1+7t \\ y=6t-1 \\ z=t+4 \end{cases}$

- a) Déterminer si les droites d et (BC) sont perpendiculaires.
- b) Déterminer l'équation cartésienne du plan P passant par A et perpenciculaire à d.
- c) Calculer la distance de A à d.