EXAMEN DE FIN D'ÉTUDES SECONDAIRES – Sessions 2024 **QUESTIONNAIRE**

Date :	20.09.24		Horaire :	08:15 - 10:15		Durée :	120 minutes
Discipline :	MATHE	Туре :	écrit	Section(s):	GACV		
					A1 4		

Numéro du candidat :

Question 1

(2+3+5+3+2+4=19 points)

Soit f la fonction définie par $f(x) = \frac{2x^2 - 5x}{x^2 - 4x + 4}$ et soit C_f sa représentation graphique.

- a) Déterminer le domaine de définition et le domaine de dérivabilité de f.
- b) Calculer la fonction dérivée de f. (On peut montrer que $f'(x) = \frac{-3x^2 + 16x 20}{(x^2 4x + 4)^2}$.)
- c) Étudier les variations de f et indiquer les extrema éventuels.
- d) Déterminer les coordonnées des points d'intersection de C_f avec les axes du repère.
- e) Établir un tableau de valeurs contenant les images de -5; -1; 1; 3 et 5 par f. Donner des valeurs approchées à 0,1 près.
- f) Construire C_f dans un repère orthonormé (unité : 1 cm).

Question 2 (8 points)

Calculer la dérivée seconde et établir le tableau de concavité de la fonction f définie sur \mathbb{R} par $f(x) = xe^{2x}$.

Préciser les coordonnées des éventuels points d'inflexion de sa courbe représentative.

Question 3 (3+2+3=8 points)

Soit f la fonction définie par $f(x) = \ln (4x^2 - 5x + 1)$ et soit C_f sa représentation graphique.

- a) Déterminer le domaine de définition et le domaine de dérivabilité de f.
- b) Calculer la fonction dérivée de f.
- c) Établir une équation de la tangente à C_f au point d'abscisse 0.

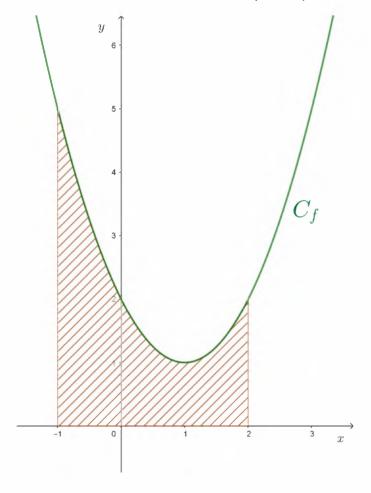
Question 4 (4+7=11 points)

Résoudre dans $\mathbb R$ l'inéquation et l'équation suivantes, après avoir déterminé leurs domaines d'existence :

a)
$$e^{-2x+3} < 5$$

b)
$$\ln(3x+1) - \ln(x) = \ln(4x+1)$$

Question 5 (3+4=7 points)


- a) Déterminer une primitive sur]0; $+\infty$ [de la fonction f définie par $f(x) = \frac{-4}{x^4} \frac{2}{\sqrt{x}}$.
- b) Soit g la fonction définie par $g(x)=(8x^3-4x)e^{x^4-x^2}$. Déterminer sur $\mathbb R$ la primitive de g qui prend la valeur 1 en x=0.

Question 6 (3+4=7 points)

a) Calculer la valeur exacte de l'intégrale :

$$\int_{1}^{e} \left(\frac{1}{x} + x \right) dx$$

b) On note C_f la courbe représentative de la fonction f définie par $f(x) = x^2 - 2x + 2$. Calculer l'aire du domaine hachuré (en u.a.).

