EXAMEN DE FIN D'ÉTUDES SECONDAIRES – Sessions 2024

QUESTIONNAIRE

Date :	23.10.24		H orair e :	08:15 - 11:15		Durée :	180 minutes
Discipline :	MATHE - MATH1	Туре :	écrit	Section(s):	GIG		
					. . , ,		

Numéro du candidat :

Question 1 [5 + 4 = 9 points]

1. Démontrer:

Pour tout réel a et tout réel b,

$$\exp(a+b) = \exp(a) \cdot \exp(b)$$

2. Démontrer:

La fonction ln est dérivable sur]0; $+\infty[$ et $\forall x \in]0$; $+\infty[$:

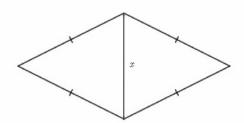
$$(\ln)'(x) = \frac{1}{x}.$$

Question 2 [5 + 4 = 9 points]

Un fermier utilise 4 poteaux et exactement 28 m de clôture pour délimiter une partie de son champ sous forme de losange.

Une des diagonales du losange mesure x (en m) avec : 0 < x < 14.

2.



Montrer que l'aire A du losange est donnée par : 1.

$$A(x) = \frac{x\sqrt{196 - x^2}}{2}$$

Quelles doivent être les longueurs exactes des diagonales du losange pour que l'aire A soit maximale ?

Question 3 [6 + 3 = 9 points]

Résoudre dans $\mathbb R$:

1.
$$\ln(\sqrt{2-x}) - \ln(\sqrt{3}) \le \ln(2x+1) - \ln(\sqrt{5x+6})$$

2. $2e^x - 5e^{-x} = -9$

2.
$$2e^{x} - 5e^{-x} = -9$$

Question 4 [2 + 4 + 3 = 9 points]

Soit f la fonction définie par $f(x) = -x + \sqrt{x^2 - 3x - 10}$.

 C_f est la courbe représentative de f dans un repère orthonormal.

- 1. Déterminer le domaine de définition D_f et calculer la limite de f en $-\infty$.
- 2. Sachant que la droite Δ d'équation $y=-2x+\frac{3}{2}$ est une asymptote oblique à C_f en $-\infty$, étudier la position relative de C_f par rapport à Δ sur D_f .
- 3. La fonction f est-elle dérivable à droite de 5 ?

Question 5 [8 points]

Soit C_f la courbe représentative de la fonction f définie sur \mathbb{R} par $f(x) = (1-x) \cdot e^x + 2$. Montrer qu'il existe 2 tangentes à la courbe C_f passant par le point A(2;0).

Question 6 [4 points]

Calculer l'intégrale suivante :

$$I = \int_{-1}^{0} \ln(2x+3) \, dx$$

Question 7 [2 + 4 + 6 = 12 points]

Dans un repère orthonormé, on a tracé les courbes C_1 et C_2 représentatives de deux fonctions respectives f_1 et f_2 définies et dérivables sur \mathbb{R} .

On sait que l'une des fonctions est la dérivée de l'autre. On note ces fonctions f et f'.

- 1. Associer à chaque fonction sa courbe et justifier.
- 2. Sachant que f est définie par $f(x) = e^{-x}(8x^2 32x + 16)$, déterminer algébriquement les coordonnées des points d'intersection A et B de C_1 et C_2 .
- 3. Calculer l'aire exacte $\mathcal A$ de la partie hachurée délimitée par les deux courbes.

