

<u>Aufgabe 1:</u> Oszillogramm

$$(1+2+2+1+2+2=10P)$$

Eine Reihenschaltung bestehend aus einem Widerstand R und einem unbekannten Bauteil (C oder L) wird an eine Wechselspannung u(t) gelegt. Im folgenden Oszillogramm sind die Spannungen $u_R(t)$ am Widerstand R sowie $u_X(t)$ am unbekannten Bauelement dargestellt.

$$A_u = 2\frac{V}{Div}$$

$$A_t = 250\frac{\mu s}{Div}$$

- a) Berechne die Frequenz der dargestellten Spannungen.
- b) Berechne die Effektivwerte der beiden Spannungen.
- c) Bestimme die Phasenverschiebung zwischen $u_R(t)$ und $u_X(t)$ und gib an, welche Spannung voreilend ist.
- d) Um welches unbekannte Bauelement handelt es sich? Begründe!
- e) Berechne den Effektivwert der an die Schaltung angelegten Spannung u(t).
- f) Zeichne das Zeigerdiagramm (mit Scheitelwerten) der Spannungen $u_R(t)$, $u_X(t)$ und u(t). Maßstab: 2 V/cm

<u>Aufgabe 2:</u> RLC-Parallelschaltung

(4+3+1+4+2+1=15P)

Ein Widerstand R = 330 Ω und ein Kondensator C = 0,1 μ F sind parallelgeschaltet und liegen an einer Wechselspannung U = 12 V.

- a) Bestimme die Frequenz, damit die Stromstärke I_R durch den Widerstand doppelt so groß ist wie die Kondensatorstromstärke I_C .
- b) Berechne die Impedanz Z der Schaltung.
- c) Berechne die Scheinleistung S.

Eine Induktivität L wird zusätzlich parallelgeschaltet, sodass sich eine Phasenverschiebung zwischen Gesamtspannung U und Gesamtstromstärke I' von 20° (induktiv) ergibt.

- d) Berechne die Induktivität L.
- e) Berechne die Frequenz, bei der die Stromaufnahme der Schaltung minimal wird.
- f) Wie groß ist der Leistungsfaktor in Fall e)?

<u>Aufgabe 3:</u> Komplexe Wechselstromrechnung

(2+4+4=10P)

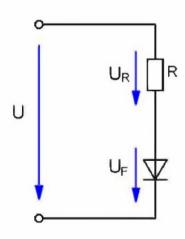
Eine reale Spule liegt parallel zu einem Kondensator mit $X_C=120~\Omega$. Die Schaltung liegt an der Gesamtspannung $\underline{U}=24~V\cdot e^{j\cdot 30^\circ}$ und wird von der Gesamtstromstärke $\underline{I}=480~mA\cdot e^{-j\cdot 10^\circ}$ durchflossen. Die Frequenz beträgt 50 Hz.

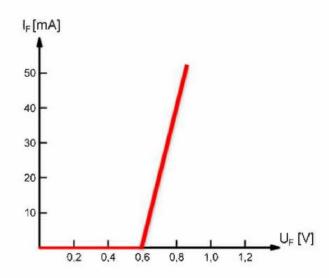
- a) Berechne die Scheinleistung \underline{S} der Schaltung in Exponentialform und Normalform.
- b) Berechne die Spulenstromstärke $\underline{I}_{Sp.}$ in Exponentialform und Normalform.
- c) Berechne den Widerstand R und die Induktivität L der Spule.

<u>Aufgabe 4:</u> Zweiweggleichrichter

(3+2+3=8P)

Eine Zweiweggleichrichterschaltung mit Ladekondensator wird mit einer Wechselspannungsquelle versorgt und mit einem ohmschen Widerstand belastet.

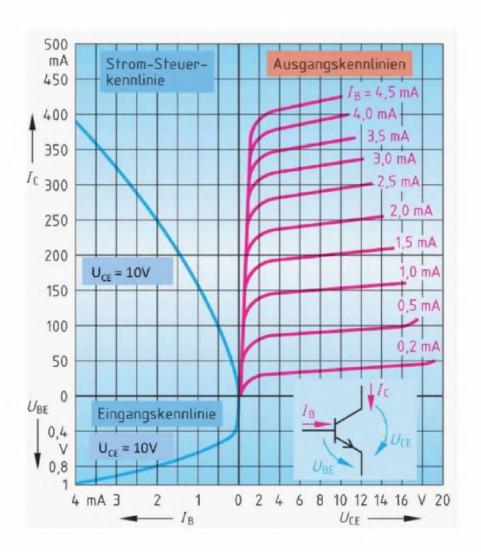

- a) Zeichne die Schaltung mit vollständiger Beschriftung.
- b) Zeichne die Ströme in unterschiedlichen Farben für die positive und negative Halbwelle in die Schaltung ein. Der Einfluss des Ladekondensators wird hierbei ignoriert.
- c) Wozu dient der Ladekondensator? Erkläre kurz die Funktionsweise.


Aufgabe 5: Diode

(4+3=7P)

Eine Diode liegt mit einem Vorwiderstand R an der Betriebsspannung $U=2\ V.$ Im folgenden Bild ist die Diodenkennlinie dargestellt.

- a) Zeichne und beschrifte das Ersatzschaltbild der Diode und gib deren Kennwerte an.
- b) Berechne den Vorwiderstand R, damit durch die Diode ein Strom der Stärke 40 mA fließt.



Aufgabe 6: Transistorschaltung

(3+3+4=10P)

Ein Transistor in Emitterschaltung mit Basisspannungsteiler wird mit einer Betriebsspannung $U_B=15\ V$ versorgt. Die Kollektor-Emitterspannung U_{CE} beträgt 10 V, die Basisstromstärke I_B beträgt 3 mA und das Querstromverhältnis beträgt 5. Das Vierquadranten-Kennlinienfeld ist im folgenden Bild dargestellt.

- a) Zeichne die Schaltung (ohne Koppelkondensatoren), beschrifte alle Bauteile und trage alle Strom- und Spannungspfeile ein.
- b) Berechne den Kollektorwiderstand R_C.
- c) Berechne die Widerstände R₁ und R₂ des Basisspannungsteilers.

