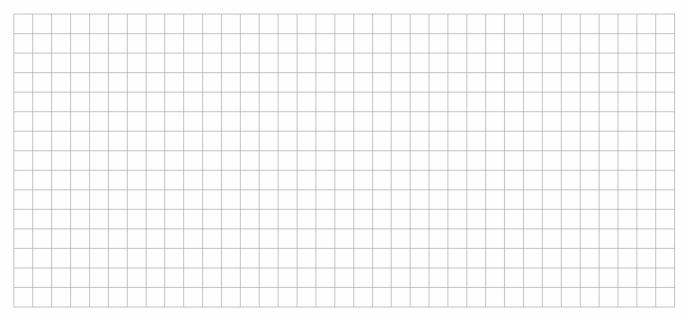

Allgemeine Bemerkung: es gibt immer nur eine einzige richtige Antwort bei den Fragen mit Mehrfachantworten (Multiple choice questions)

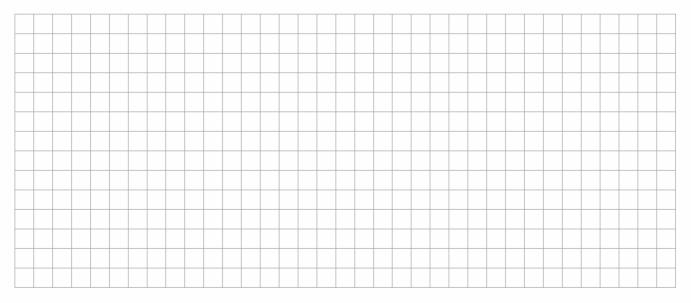
I. Säure-Basen Reaktionen (7 + 4 + 8 = 19 Punkte)

Frage 1: Titration (7 Punkte)

In einem Labor wurde im Säureschrank eine unbeschriftete Flasche mit einer organischen Säure (Lösung A) gefunden. Die Dichte von Lösung A wurde ermittelt und beträgt ρ = 1,015 g·cm⁻³. Der Säuregehalt von Lösung A soll nun mittels einer Titration überprüft werden.

Zur Herstellung der Probelösung werden 5 mL aus Lösung A entnommen und in einem Messkolben auf 100 mL verdünnt. Die entstandene Probelösung (Lösung B) wird anschließend mit Kalilauge (KOH) der Stoffmengenkonzentration 0,8 M titriert. Dabei wurde folgende Titrationskurve aufgezeichnet.

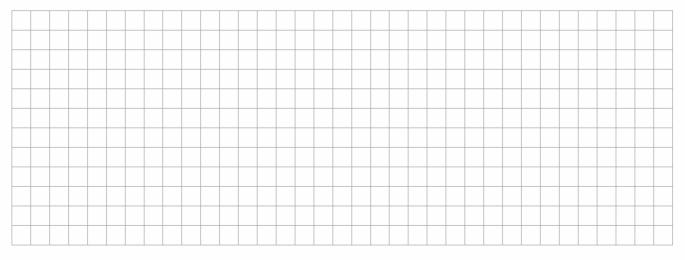

a. Bestimmen Sie grafisch den Äquivalenzpunkt und nennen Sie den Volumen der Maßlösung sowie den pH-Wert am Äquivalenzpunkt. (1P)


b. Berechnen Sie für die Probelösung (Lösung B) die Stoffmengenkonzentration vor der Titration. (0,5P)

c. Identifizieren Sie die unbekannte Säure mithilfe der Titrationskurve. Begründen Sie ausführlich, warum diese Methode in diesem Fall benutzt werden kann. (1,25P)

d. Bestimmen Sie rechnerisch die Stoffmengenkonzentration c sowie den Massenanteil ω der Lösung A. (2,5P)

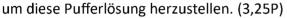
e. Begründen Sie den pH-Wert der Lösung am Äquivalenzpunkt. Formulieren Sie anschließend die Protolysegleichung des pH-bestimmenden Teilchens. (1,75P)



Frage 2: pH-Wert von Lösungen (4 Punkte)

a. Eine Lösung besitzt einen pH-Wert von 4,65. Bestimmen Sie die Stoffmengenkonzentration der Oxonium-Ionen und der Hydroxid-Ionen in dieser Lösung. (1,5P)

b. 3,5 g Magnesiumsulfat werden in 100 mL Wasser gelöst. Identifizieren Sie das pH-bestimmende Teilchen und nennen Sie den Charakter der Lösung. Berechnen Sie anschließend den pH-Wert der Lösung. (1,5P)

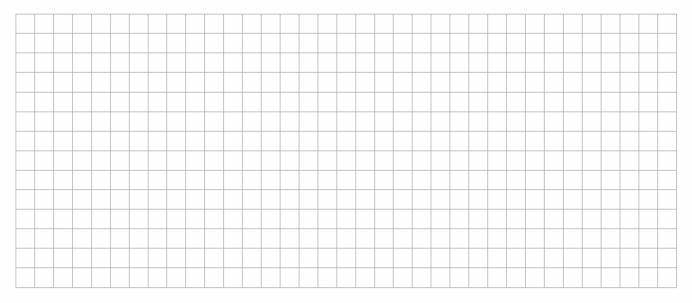

- c. Kreuzen Sie die falsche Antwort an! (1P)
 - □ In einer alkalischen Lösung gilt $c(OH^{-}) > 10^{-7} M$.
 - \square Die Base 1 ist schwächer als Base 2, wenn pK_{B1}>pK_{B2}.
 - ☐ Eine Lösung mit einem pOH-Wert von 8,5 gilt als alkalisch.
 - ☐ In einer neutralen Lösung gilt $c(H_3O^+) = 10^{-7} M$.

Frage 3: Pufferlösungen (8 Punkte)

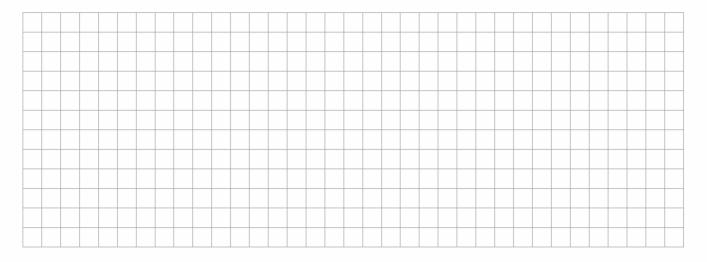
a. Eine Pufferlösung mit einem pH-Wert von 10,96 soll aus folgendem Säure-Base-Paar hergestellt werden: CH₃NH₃⁺ (Methylammonium) und CH₃NH₂ (Methylamin).

Dazu stehen Ihnen 50 mL einer 1,5 M Methylamin-Lösung und festes Methylammoniumchlorid (CH₃NH₃Cl) zur Verfügung. Der Wert der Basenkonstante von Methylamin beträgt

(CH₃NH₃Cl) zur Verfügung. Der Wert der Basenkonstante von Methylamin beträgt $K_B = 4,47 \cdot 10^{-4} \text{ mol } \cdot L^{-1}$. Bestimmen Sie die Masse an Methylammoniumchlorid die benötigt wird,



- **b.** Zu 100 mL Pufferlösung die 3,5 g Natriumhydrogenphosphat sowie 6,2 g Kaliumdihydrogenphosphattrihydrat enthält werden 15 mL Salzsäure der Stoffmengenkonzentration 0,5 mol·L⁻¹ gegeben.
 - i. Berechnen Sie die Stoffmengen der Hydrogenphosphat-Ionen, der Dihydrogenphosphat-Ionen und der Oxonium-Ionen vor der Reaktion. (1,5P)

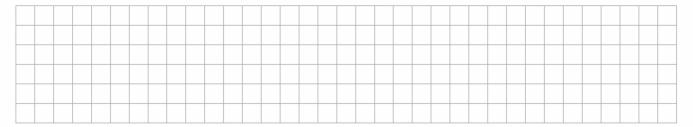


ii. Formulieren Sie die Reaktionsgleichung und fertigen Sie eine Stoffmengentabelle der Stoffmengen vor der Reaktion und nach der Reaktion an. (1,5P)

iii. Bestimmen Sie den pH-Wert der entstandenen Pufferlösung und berechnen Sie die pH-Wert Änderung. (1,25P)

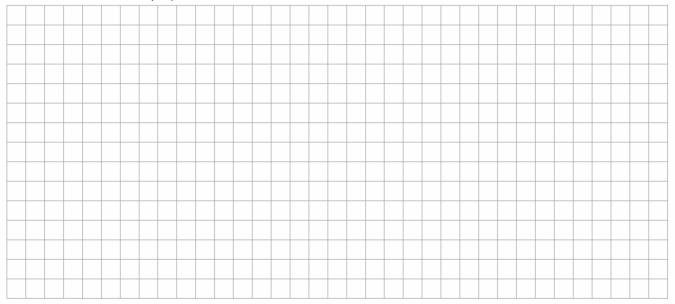
iv. Handelt es sich bei der entstandenen Lösung noch um eine Pufferlösung? Begründen Sie Ihre Antwort. (0,5P)

II. Elektrochemie (2,5+2,5+1=6) Punkte)


Frage 4: Elektrolyse (2,5 Punkte)

In eine Salzschmelze aus Aluminiumchlorid tauchen zwei Graphitelektroden, die an einen Gleichstromgenerator angeschlossen sind.

a. Nennen Sie alle vorhandenen Teilchen und nutzen Sie die beiliegende elektrochemische Spannungsreihe, um zu beweisen, dass hier keine spontane Reaktion stattfinden kann. (1P)


b. Das Anschalten des Gleichstromgenerators ermöglicht erst die Redoxreaktion. Formulieren Sie die Teilgleichungen der Oxidation und der Reduktion. Geben Sie auch die Polung der Elektroden ((+)-Pol oder (-)-Pol) an. (1,5P)

Frage 5: Der ZEBRA-Akkumulator (2,5 Punkte)

Die Abkürzung ZEBRA steht für englisch "Zero Emission Battery Research Activities". Sie zählt zu den Thermalakkus da die Betriebstemperatur bei etwa 300 °C liegt. Die positive Elektrode besteht aus metallischem Nickel der sich in einer flüssigen Salzlösung aus Nickel(II)-chlorid befindet. Die negative Elektrode besteht aus flüssigem Natrium. Beide Elektroden sind durch eine poröse Trennwand voneinander getrennt. Beim Entladen entsteht an der positiven Elektrode metallisches Nickel, an der negativen Elektrode entstehen Natrium-Ionen.

a. Identifizieren Sie die beiden Redoxpaare und formulieren Sie für den Entladevorgang die Teilgleichung der Oxidation und der Reduktion sowie die Gesamtgleichung. Benennen Sie zudem beide Elektroden. (2P)

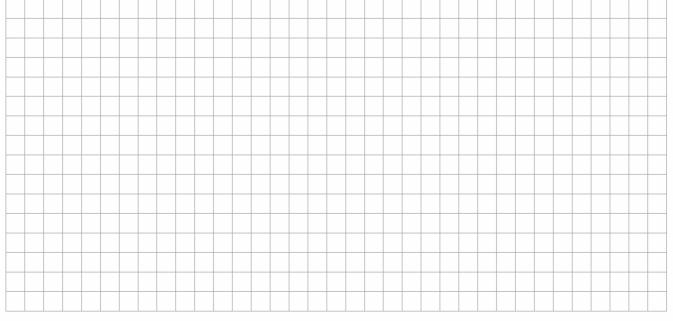
b. Berechnen Sie die Zellspannung bei Standardzuständen mithilfe der beiliegenden elektrochemischen Spannungsreihe. (0,5P)

Frage 6: Die PEM-Brennstoffzelle (1 Punkt)

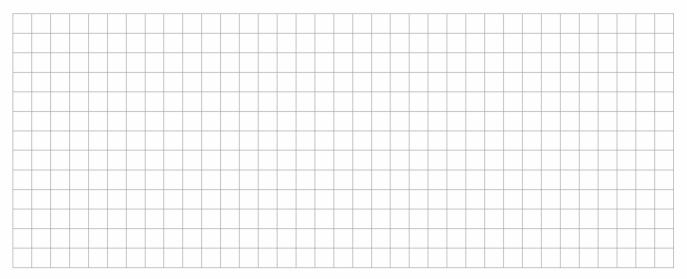
Kreuzen Sie die richtige Antwort an!

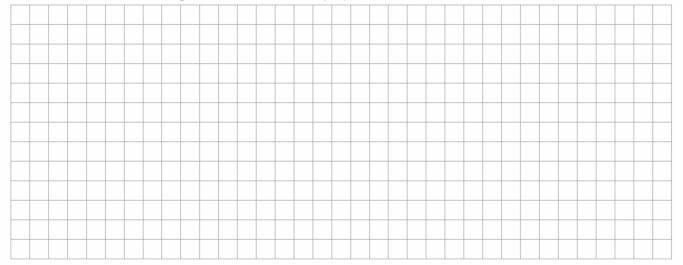

- ☐ Wasser wird an der Anode oxidiert.
- ☐ Die Elektrolytmembran lässt sowohl Protonen als auch Wasser passieren.
- ☐ Wasserstoff wird als Oxidationsmittel ständig zugeführt.
- ☐ Protonen wandern von der Kathode zur Anode.

III. Organische Chemie (6 + 10 + 6 + 7,25 + 5,75 = 35 Punkte)


Frage 7: Isomere und Stereochemie (6 Punkte)

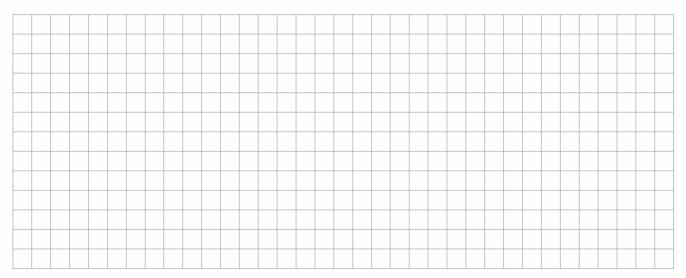
Gegeben sind folgende Moleküle: 2-Ethylbutanal, Hexanal, 4-Methylpentan-2-ol, Hexan-2-on


a. Zeichnen Sie die Skelettformeln dieser Moleküle. (2P)


b. Bei welchen Molekülen handelt es sich um Isomere? Begründen Sie Ihre Antwort. (0,75P)

c. Eines dieser Moleküle besitzt ein asymmetrisches Kohlenstoffatom. Identifizieren Sie dieses Molekül und markieren Sie das asymmetrische Kohlenstoffatom in Punkt a. Zeichnen Sie anschließend die (*R*)-Konfiguration des Moleküls. Geben Sie die Prioritäten nach CIP an. (1,5P)

d. Welche Eigenschaft ermöglicht es experimentell zwischen dem *(R)*-Isomer und dem *(S)*-Isomer zu unterscheiden? Erklären Sie diese Eigenschaft ausführlich. Benennen und erklären Sie dabei auch den dafür benötigten Versuchsaufbau. (1P)



e. Eine Probe enthält ein äquimolares Gemisch des (R)-Isomers und des (S)-Isomers eines Stoffes. Wie nennt man dieses Gemisch? Welches Ergebnis erhält man in diesem Fall mit der Methode unter Punkt d. (0,75P)

Frage 8: Reaktionen mit organischen Molekülen (10 Punkte)

- **a.** Formulieren Sie die chemischen Reaktionsgleichungen mithilfe der Halbstrukturformeln. Benennen Sie dabei alle Moleküle und nennen Sie den Reaktionstypen. (7,5P)
 - i. Bei einer Reaktion mit Chlorwasserstoff entstehen 2-Chlor-2-methylbutan und 2-Chlor-3-methylbutan. (2,5P)

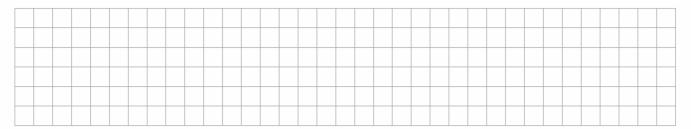
ii. Ein Gemisch aus 3-Ethyl-4-methylhexan-2-ol und Schwefelsäure wird erhitzt. Geben Sie ein mögliches organisches Reaktionsprodukt an. (2,5P)

iii. Propan reagiert unter Lichteinfluss mit Chlorgas. (2,5P) (Nur ein mögliches Monosubstitutionsprodukt angeben!)

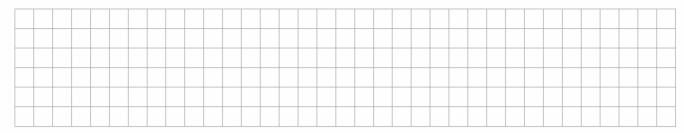
b. Bei der Reaktion in Beispiel a.i. entstehen 2 Produkte. Bei einem der Produkte handelt es sich um das Hauptprodukt bei dem anderen um das Nebenprodukt. Identifizieren Sie Hauptprodukt und Nebenprodukt und erläutern Sie Ihre Aussage ausführlich, indem Sie auch die gebildeten Zwischenprodukte mit Halbstrukturformeln darstellen. (2,5P)

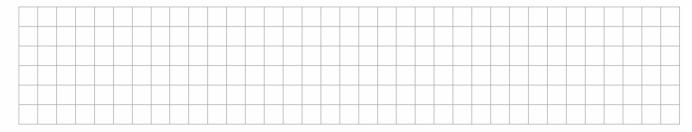
Frage 9: Nachweis eines unbekannten Stoffes (6 Punkte)

Ein organischer Stoff mit der Summenformel C₄H₁₀O (Stoff A) soll mithilfe folgender Reaktionen identifiziert werden.

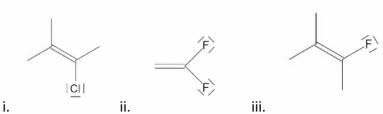

Reaktion 1: Der Stoff A reagiert mit Chlorwasserstoff zu einem Stoff B. Hierbei wird Wasser abgespalten. Stoff B wird anschließend mithilfe eines ausgeglühten Kupferdrahtes in eine Bunsenbrennerflamme gehalten. Die Flamme färbt sich dabei grünlich (positive Beilsteinprobe).

Reaktion 2: Stoff A reagiert mit Kupfer(II)-oxid zu einem Stoff C. Die Brady-Probe (2,4-DNPH) mit Stoff C ist positiv. Die Schiff-Probe mit Stoff C ist jedoch negativ.


a. Zeichnen Sie die Halbstrukturformel von Stoff A und benennen Sie diesen. (1,5P)


b. Geben Sie für Reaktion 1 die Reaktionsgleichung mit Halbstrukturformeln an und benennen Sie die Produkte. (1,25P)

c. Geben Sie für Reaktion 2 die Reaktionsgleichung mit Halbstrukturformeln an und nennen Sie alle relevanten Oxidationszahlen. Benennen Sie auch das organische Reaktionsprodukt. (2,75P)

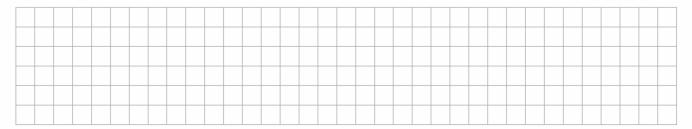


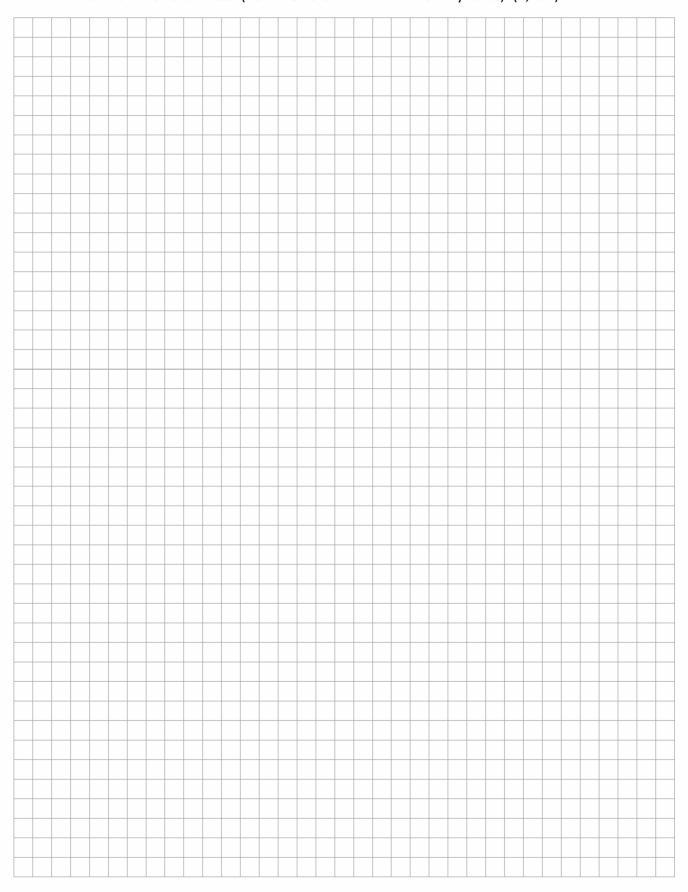
d. Erklären Sie ausführlich mithilfe der Oxidationszahlen welcher Stoff in Punkt c. oxidiert, beziehungsweise reduziert wird. (0,5P)

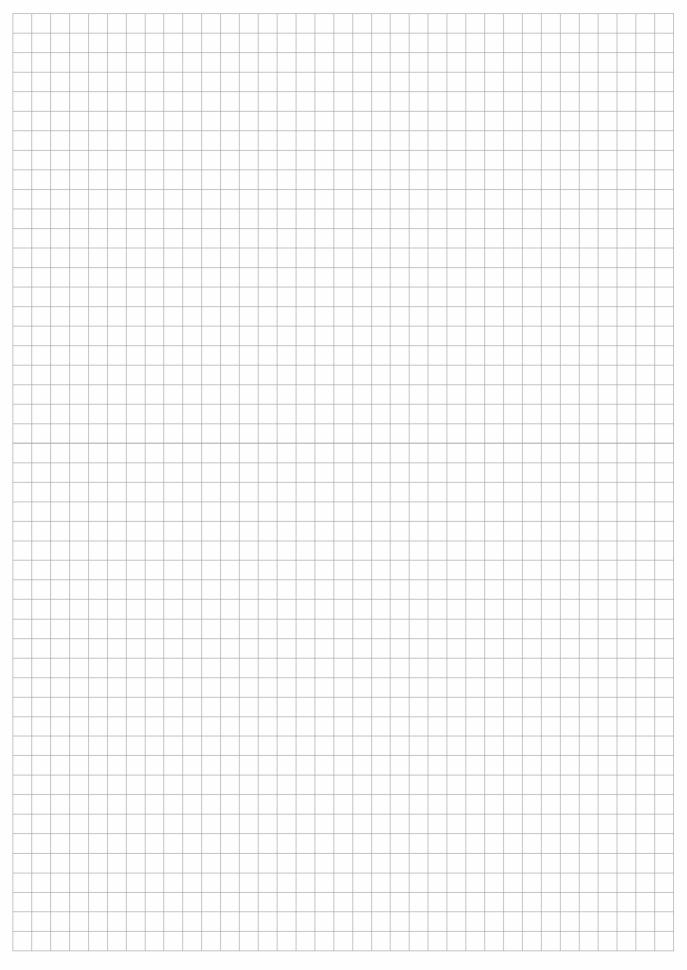
Frage 10: Reaktionsgeschwindigkeit (7,25 Punkte)

a. Benennen Sie folgende Moleküle nach IUPAC und CIP. (1,5P)

b. Klassieren Sie die Moleküle nach aufsteigender Reaktionsgeschwindigkeit mit Brom. Begründen Sie Ihre Antwort mithilfe der induktiven Effekte. (2P)


c. Geben Sie für das Molekül ii. den vollständigen Reaktionsmechanismus (mit Strukturformeln) für die Reaktion mit Brom an. Benennen Sie dabei auch alle Teilschritte. (3,75P)




Frage 11: Ester (5,75 Punkte)

- a. Kreuzen Sie die richtige Antwort an! (1P)
 - ☐ Gibt man im sauren Bereich einen Überschuss an Wasser zu einem Ester, so verschiebt sich das Gleichgewicht in Richtung der Esterbildung.
 - ☐ Bei der Veresterung im sauren Bereich dient ein Überschuss an Schwefelsäure zur Verschiebung des Gleichgewichtes in Richtung der Esterbildung.
 - □ Öle sind Triglyceride.
 - ☐ Die Waschwirkung von Seifen ist auf den ausschließlich hydrophoben Charakter der enthaltenen Moleküle zurückzuführen.
- **b.** Ein nach Ananas riechender Ester ist das Molekül Butansäuremethylester.
 - i. Zeichnen Sie die Skelettformel dieses Esters. (0,5P)

ii. Dieser Ester wird nun mit Natronlauge vermischt. Zeichnen Sie den vollständigen Reaktionsmechanismus (mit Strukturformeln) für die alkalische Esterspaltung. Benennen Sie dabei auch alle Teilschritte. (Benutzen Sie R und R' für die Alkylreste). (4,25P)

		7	7	က	4	2	9	_		
uəddrub	18 VIIIA	4,0 2 He	20,2 10 Ne	39,9 18 Ar	83,8 36 Kr	131,3 54 Xe	222 86 Rn	293 118 Uuo	175,0	260 103 Lr
	16 WA 17 VIIA 18 VIIIA		19,0 9 F	35,5 17 CI	79,9 35 Br	126,9	²¹⁰ 85 At		173,0 X	259 102 No
			16,0	32,1 16 S	79,0 34 Se	127,6 52 Te	209 84 PO	289 116 Uuh	168,9 T.	252 257 258 259 260 99 ES 100 Fm 101 Md 102 No 103 Lr
tru6	15 VA		14,0 Z	31,0 15 P	74,9 33 AS	121,8 51 Sb	209,0 83 Bi			68 LT 257 100 FM
	14 IVA		12,0 6 C	28,1 14 Si	63,5 65,4 69,7 72,6 29 Cu 30 Zn 31 Ga 32 Ge	118,7 50 Sn	207,2 82 Pb	289 114 Uuq	164,9	238 237 244 243 247 247 251 252 32 U 93 Np 94 Pu 95 Am 96 Cm 97 BK 98 Cf 99 Es
	13 IIIA		10,8 5 B	27,0 13 Al	69,7 31 Ga		204,4 81 TI		162,5	251 98 Cf
				12 IIB	65,4 30 Zn	107,9 112,4 47 Ag 48 Cd	197,0 200,6 79 Au 80 Hg	277 112 Uub	158,9 T.	247 97 BK
Φ				11 IB	63,5 29 C u	7	197,0 79 Au	272 111 Uuu	157,3	247 96 Cm
smeni				9 VIIIB 10 VIIIB	58,7 28 Ni	106,4 46 Pd	195,1 78 Pt	269 110 Uun	152,0	63 Lu 243 95 Am
Φ Ü				9 VIIIB	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	192,2 77 lr	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	150,4	237 244 243 247 247 251 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf
tem d			Nebengruppen	8 VIIIB	55,8 26 Fe	101,1 44 Ru	186,2 190,2 75 Re 76 Os	265 108 HS	147 	237 93 Np
Das Periodensystem der Elemente			Nebeng	7 VIIB	54,9 25 Mn	99 43 TC	186,2 75 Re	262 107 Bh	144,2 2 1	238 92 U
				6 VIB	52,0 24 Cr	95,9 42 Mo	183,8 74 W	263 106 Sg	140,9	231 91 Pa
				5 VB	50,9 23 V	92,9 41 Nb	180,9 73 Ta	262 105 Db	140,1	232 90 Th
				4 IVB	47,9 22 Ti	91,2 40 Zr	178,5 72 Hf	261 104 Rf	138,9	227 89 AC
Haupt -				3 IIIB	45,0 21 S C	88,9 39 Y	57 bs 71 178,5 La-Lu ₇₂ Hf	89 bs 103 AC-L	jde	&
	2 IIA		^{9,0} ⁴ Be	24,3 12 Mg	39,1 40,1 45,0 47,9 19 K 20 Ca Z1 Ti	87,6 38 Sr	132,9 137,3 55 CS 56 Ba	223 226 89 bs 103 261 87 Fr 88 Ra Ac-L 104 R	Lanthanoide	Actinoide
	1 IA	ō <u>T</u>	6,9 3 Li	23,0 24,3 11 Na 12 Mg	39,1 19 K	85,5 87,6 37 Rb 38 Sr	132,9 55 Cs	223 87 Fr	Lar	Ŭ ₹
	-	-	2	က	4	5	9	_		

Berechnungen von pH-Werten

Sehr starke Säuren, extrem starke Säuren

$$pH = -log(c(H_3O^*)) = -log(c_0(HA))$$

Schwache Säuren

$$pH = \frac{1}{2}pK_S - \frac{1}{2}\log(c_0(HA))$$

Starke Basen

pOH =
$$-\log(c(OH^{-})) = -\log(c_0(A^{-}))$$

pH = 14 - pOH = 14 + $\log(c_0(A^{-}))$

Schwache Basen

pOH =
$$\frac{1}{2}$$
 pK_B - $\frac{1}{2}$ log(c₀(A⁻))
pH = 14 - pOH = 14 - $\frac{1}{2}$ pK_B + $\frac{1}{2}$ log(c₀(A⁻))

Pufferlösungen

$$pH = pK_S + log(\frac{c_{A^-}}{c_{HA}}) = pK_S + log(\frac{n_{A^-}}{n_{HA}})$$

Indikatoren

Indikator	Farbe der Säure	pH-Bereich des Farbumschlags	Farbe der Base	PK ₄ (Hin)	
Thymolblau	rot	1,2- 2,8	gelb	1,7	
Methylorange	rot	3,0-4,4	gelb-orange	3,4	
Bromkresolgrün	gelb	3,8- 5,4	blau	4,7	
Methylrot	rot	4,2- 6,2	gelb	5,0	
Lackmus	rot	5,0- 8,0	blau	6,5	
Bromthymolblau	gelb	6,0- 7,6	blau	7,1	
Thymolblau	gelb	8,0 - 9,6	blau	8,9	
Phenolphthalein	farblos	8,2-10,0	purpur	9,4	
Thymolphthalein	farblos	9,3-10,5	blau	10,0	
Alizaringelb R	gelb	10,1 -12,1	rot	11,2	

Tabelle mit pK_S und pK_B Werten

p <i>K</i> ₅	Säure		korrespondierende Base			
	Perchlorsäure	HClO ₄	ClO ₄ -	Perchlorat-Ion		
Vollständige Protonenabgabe	lodwasserstoffsäure	HI	-	lodid-lon	Pro	
	Bromwasserstoff	HBr	Br-	Bromid-Ion	Keine	
	Salzsäure	HCl	Cl-	Chlorid-Ion	Keine Protonenaufnahme	
e abe	Schwefelsäure	H ₂ SO ₄	HSO ₄ -	Hydrogensulfat-Ion	hme	
	Salpetersäure	HNO ₃	NO ₃ -	Nitrat-Ion		
	Oxonium-lon	H_3O^+	H ₂ O	Wasser		
1,42	Oxalsäure	$H_2C_2O_4$	HC ₂ O ₄ - Hydrogenoxalat-lon		12,58	
1,92	Hydrogensulfat-Ion	HSO ₄ -	SO ₄ ²⁻	Sulfat-Ion	12,08	
2,13	Phosphorsäure	H_3PO_4	H ₂ PO ₄ -	Dihydrogenphosphat-Ion	11,87	
2,22	Hexaaquaeisen(III)-lon	$[Fe(H_2O)_6]^{3+}$	[Fe(OH)(H ₂ O) ₅] ²⁺	Pentaaquahxdroxyeisen(III)-Ion	11,78	
3,14	Flusssäure (Fluorwasserstoffsäure)	HF	F-	Fluorid-Ion	10,86	
3,35	Salpetrige Säure	HNO ₂	NO ₂ -	Nitrit-Ion	10,65	
3,75	Ameisensäure (Methansäure)	НСООН	HCOO-	Methanoat-Ion (Formiat)	10,25	
4,75	Essigsäure (Ethansäure)	CH ₃ COOH	CH ₃ COO Ethanoat-lon (Acetat)		9,25	
4,85	Hexaaquaaluminium-lon	$[Al(H_2O)_6]^{3+}$	$[Al(OH)(H_2O)_5]^{2+}$	Pentaaquahxdroxyaluminium-lon	9,15	
6,52	Kohlensäure	$CO_2 + H_2O$	HCO ₃ -	Hydrogencarbonat-Ion	7,48	
6,92	Schwefelwasserstoff	H_2S	HS-	Hydrogensulfid-lon	7,08	
7,00	Hydrogensulfit-Ion	HSO ₃ -	SO ₃ ²⁻	Sulfit-Ion	7,00	
7,20	Dihydrogenphosphat-Ion	H ₂ PO ₄ -	HPO ₄ ²⁻	Hydrogenphosphat-lon	6,80	
9,25	Ammonium-Ion	NH_4^+	NH ₃	Ammoniak	4,75	
9,40	Blausäure (Cyanwasserstoff)	HCN	CN-	Cyanid-Ion	4,60	
10,40	Hydrogencarbonat-lon	HCO ₃ ⁻	CO ₃ ²⁻	Carbonat-Ion	3,60	
11,62	Wasserstoffperoxid	H_2O_2	HO ₂ -	Hydrogenperoxid-lon	3,38	
12,36	Hydrogenphosphat-lon	HPO ₄ ²⁻	PO ₄ 3-	Phosphat-Ion	1,64	
13,00	Hydrogensulfid-Ion	HS ⁻	S ²⁻	Sulfid-Ion	1,00	
	Wasser	H_2O	OH-	Hydroxid-lon		
Keine Protonenabgabe	Ethanol	CH ₃ CH ₂ OH	CH ₃ CH ₂ O ⁻	Ethanolat-Ion	70	
	Methanol	CH ₃ OH	CH₃O−	Methanolat-Ion	Voll	
	Ammoniak	NH_3	NH ₂ ⁻	Amid-lon	Vollständige otonenaufnah	
gabe	Hydroxid-lon	OH-	O ²⁻	Oxid-Ion	Vollständige Protonenaufnahme	
	Wasserstoff	H ₂	H-	Hydrid-Ion	r o	

Standardpotenziale bei 25 °C

Dod	_	Ou 1 m o ⁻	FALV
Red	 	Ox + n e ⁻	<i>E⊖</i> / V
Li(s)	→	Li ⁺ (aq) + e ⁻	-3,02
K(s)	=	$K^{+}(aq) + e^{-}$	-2,92
Ba(s)	\rightleftharpoons	$Ba^{2+}(aq) + 2e^{-}$	-2,90
Ca(s)	-	$Ca^{2+}(aq) + 2e^{-}$	-2,76
Na(s)	<i>,</i> →	$Na^{+}(aq) + e^{-}$	-2,71
Mg(s)	=	$Mg^{2+}(aq) + 2e^{-}$	-2,38
Al(s)	=	$Al^{3+}(aq) + 3e^{-}$	-1,66
$N_2H_4(aq) + 4 OH^-(aq)$,	$N_2(g) + 4 H_2O(l) + 4 e^-$	-1,16
$SO_3^{2^-}(aq) + 2 OH^-(aq)$	→	$SO_4^{2-}(aq) + H_2O(I) + 2 e^-$	-0,92
$H_2(g) + 2 OH^-(aq)$	=	$2 H_2O(1) + 2 e^{-}$	-0,83
Zn(s)	=	$Zn^{2+}(aq) + 2e^{-}$	-0,76
Fe(s)	=	$Fe^{2+}(aq) + 2e^{-}$	-0,41
Cd(s)	=	Cd ²⁺ (aq) + 2 e ⁻	-0,40
$Pb(s) + SO_4^{2-}(aq)$	\rightleftharpoons	$PbSO_4(s) + 2 e^{-}$	-0,36
Ni(s)	\rightleftharpoons	$Ni^{2+}(aq) + 2e^{-}$	-0,23
$H_2O_2(aq) + 2 OH^-(aq)$	\rightleftharpoons	$O_2(g) + 2 H_2O(I) + 2 e^-$	-0,15
$Ag(s) + I^{-}(aq)$	\rightleftharpoons	$AgI(s) + e^{-}$	-0,15
Sn(s)	\rightleftharpoons	Sn ²⁺ (aq) + 2 e ⁻	-0,14
Pb(s)	\rightleftharpoons	$Pb^{2+}(aq) + 2 e^{-}$	-0,13
Fe(s)	\rightleftharpoons	$Fe^{3+}(aq) + 3 e^{-}$	-0,04
$H_2(g) + 2 H_2O(I)$	\rightleftharpoons	2 H₃O⁺(aq) + 2 e⁻	0
$Ag(s) + Br^{-}(aq)$	\rightleftharpoons	AgBr(s) + e ⁻	0,07
$H_2S(g) + 2 H_2O(I)$	\rightleftharpoons	S(s) + 2 H₃O⁺(aq) + 2 e⁻	0,14
Cu ⁺ (aq)	\rightleftharpoons	Cu ²⁺ (aq) + e ⁻	0,16
$H_2SO_3(aq) + 5 H_2O(l)$	\rightleftharpoons	SO ₄ ²⁻ (aq) + 4 H ₃ O ⁺ (aq) + 2 e ⁻	0,20
Ag(s) + Cl⁻(aq)	\rightleftharpoons	AgCl(s) + e ⁻	0,22
2 Hg(l) + 2 Cl ⁻ (aq)	\rightleftharpoons	$Hg_2Cl_2(s) + 2 e^-$	0,27
2 Ag(s) + 2 OH⁻(aq)	\rightleftharpoons	$Ag_2O(s) + H_2O(I) + 2 e^{-}$	0,34
Cu(s)	\rightleftharpoons	Cu ²⁺ (aq) + 2 e ⁻	0,34
4 OH⁻(aq)	\rightleftharpoons	$O_2(g) + 2 H_2O(l) + 4 e^-$	0,40
$Cl_2(g) + 4 OH^-(aq)$	\rightleftharpoons	2 OCl⁻(aq) + 2 H₂O(l) + 2e⁻	0,42
Cu(s)	\rightleftharpoons	Cu⁺(aq) + e⁻	0,52
2 l⁻(aq)	\rightleftharpoons	I ₂ (s) + 2 e⁻	0,54
$MnO_2(s) + 4 OH^-(aq)$	\rightleftharpoons	$MnO_4^-(aq) + 2 H_2O(l) + 3 e^-$	0,59
$H_2O_2(aq) + 2 H_2O(I)$	\rightleftharpoons	$O_2(g) + 2 H_3O^+(aq) + 2 e^-$	0,68
Fe ²⁺ (aq)	\rightleftharpoons	Fe ³⁺ (aq) + e ⁻	0,77
Ag(s)	\rightleftharpoons	$Ag^{+}(aq) + e^{-}$	0,80
2 Hg(l)	\rightleftharpoons	$Hg_2^{2+}(aq) + 2 e^-$	0,80
Hg(I)	\rightleftharpoons	$Hg^{2+}(aq) + 2 e^{-}$	0,85
NO(g) + 6 H2O(I)	\rightleftharpoons	NO₃ ⁻ (aq) + 4 H₃O ⁺ (aq) + 3 e ⁻	0,96
2 Br ⁻ (aq)	\rightleftharpoons	Br ₂ (aq) + 2 e ⁻	1,07
Pt(s)	\rightleftharpoons	Pt ²⁺ (aq) + 2 e ⁻	1,20
$I_2(s) + 18 H_2O(I)$	\rightleftharpoons	2 IO ₃ -(aq) + 12 H ₃ O+(aq) + 10 e-	1,20
$Mn^{2+}(aq) + 6 H_2O(I)$	\rightleftharpoons	$MnO_2(s) + 4 H_3O^+(aq) + 2 e^-$	1,21
6 H ₂ O(I)	\rightleftharpoons	$O_2(g) + 4 H_3O^+(aq) + 4 e^-$	1,23
2 Cr ³⁺ (aq) + 21 H ₂ O(l)	\rightleftharpoons	$Cr_2O_7^{2-}(aq) + 14 H_3O^+(aq) + 6 e^-$	1,33
2 Cl⁻(aq)	\rightleftharpoons	Cl ₂ (g) + 2 e ⁻	1,36
Au(s)	\rightleftharpoons	Au ³⁺ (aq) + 3 e ⁻	1,42
$Pb^{2+}(aq) + 6 H_2O(I)$	\rightleftharpoons	$PbO_2(s) + 4 H_3O^+(aq) + 2 e^-$	1,46
$Mn^{2+}(aq) + 12 H_2O(I)$	\rightleftharpoons	$MnO_4^-(aq) + 8 H_3O^+(aq) + 5 e^-$	1,49
$MnO_2(s) + 6 H_2O(I)$	\rightleftharpoons	$MnO_4^-(aq) + 4 H_3O^+(aq) + 3 e^-$	1,68
$PbSO_4(s) + 5 H_2O(l)$	\rightleftharpoons	$PbO_2(s) + HSO_4^-(aq) + 3 H_3O^+(aq) + 2 e^-$	1,69
4 H ₂ O(I)	\rightleftharpoons	$H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^-$	1,78
2 SO ₄ ²⁻ (aq)	=	$S_2O_8^{2-}(aq) + 2e^-$	2,00
2 F ⁻ (aq)	=	$F_2(g) + 2e^-$	2,87
, 17		,	• •

Organische Chemie

Prioritätenliste und Benennung der Verbindungen

Prioritätenliste							
Verbindungsklasse	Vorsilbe	Endung					
Carbonsäure	carboxy	säure					
Ester		säureester					
Aldehyd	formyl	al					
Keton	охо	on					
Alkohol	hydroxy	ol					
Amin	amino	amin					
Alken		en					
Halogen	halogen						