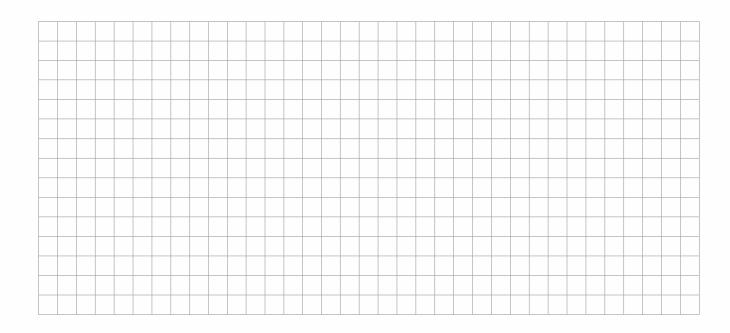
EXAMEN DE FIN D'ÉTUDES SECONDAIRES – Sessions 2024 QUESTIONNAIRE								
Date :	24.05.24		Horaire :	08:15 - 10:45	Durée :	150 minutes		
Discipline :	СНІМІ	Туре :	écrit	Section(s) :	GSN			
					Numéro du candidat :			

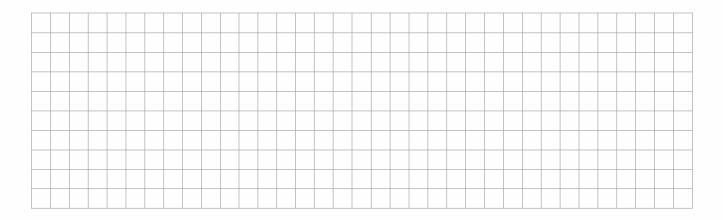

Remarque générale : il n'y a qu'une seule réponse correcte pour les questions à choix multiples.

I. Réctions acide-base (6 + 7 + 4 = 17 points)

Question 1: Calculs de teneurs et valeurs pH de solutions

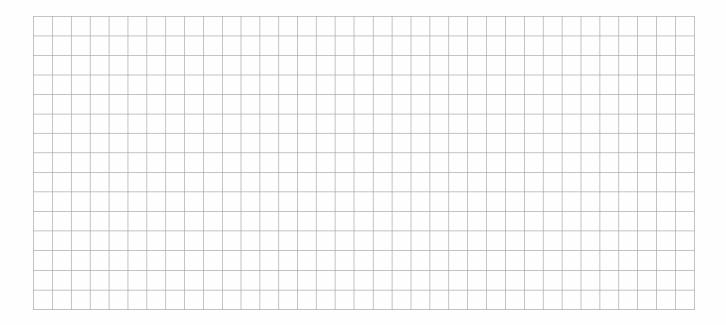
Pour préparer une solution d'hydrogénocarbonate de sodium à 6 %, on dissout dans l'eau de l'hydrogénocarbonate de sodium solide que l'on trouve notamment dans les mélanges de levure chimique. La densité de la solution obtenue est de 1,043 g/cm³.

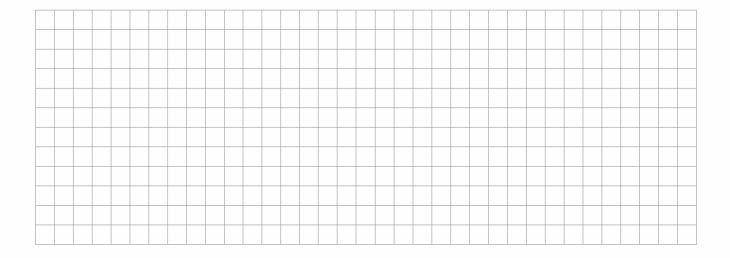
a) Calculez les concentrations massique et molaire de la solution. (3)


b) Formulez l'équation de la dissolution de l'hydrogénocarbonate de sodium dans l'eau et déterminez le caractère (acide, base ou neutre) de la solution à l'aide de l'équation de protolyse correspondante. (3)

Question 2: Titrage acide-base (7p)

Dans la pharmacie, plusieurs récipients avec des solutions de vitamines différentes ont perdus leur étiquette. Pour identifier la vitamine contenue dans un de ces récipients, une solution vitaminique acide est maintenant titrée. Lors du titrage de 15 mL de cette solution vitaminique avec de la soude caustique (c = 0,10 mol·L⁻¹), le point d'équivalence est atteint après l'ajout de 20 mL. Lors de l'ajout de 10 mL, le pH était de 4,17.


a) Déterminez la concentration molaire de la solution de vitamines. (1)

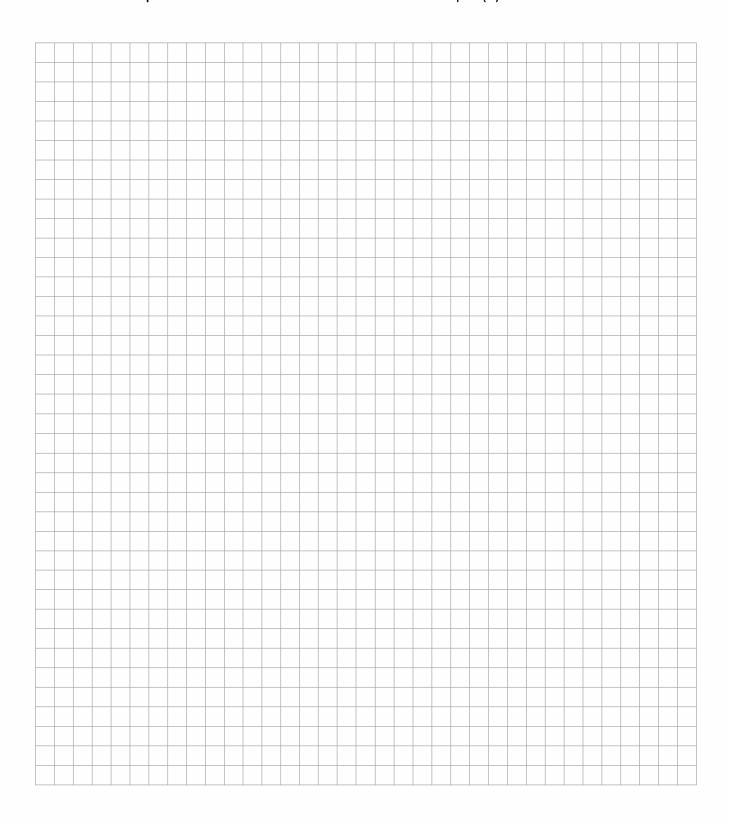

b) Déterminez de quelle vitamine il s'agit et argumentez. (1,5)

Vitamine	Nom	Formule	рK _A	рK _В	Base correspondante
A*	Acide rétinoïque	C ₂₀ H ₂₈ O ₂	4,76	9,24	C ₂₀ H ₂₇ O ₂ -
С	Acide ascorbique C ₆ H ₈ O ₆		4,17	9,83	C ₆ H ₇ O ₆ -
B ₅	Acide pantothénique	C ₉ H ₁₇ NO ₅	4,41	9,59	C ₉ H ₁₆ NO ₅ -
B ₉	Acide folique	C ₁₉ H ₁₉ N ₇ O ₆	4,65	9,35	C ₁₉ H ₁₈ N ₇ O ₆


^{*} La vitamine A acide est un dérivé de la vitamine A (rétinol).

c) Donnez l'équation de la réaction pour le titrage (la vitamine est un acide monovalent) et déterminez le pH initial de la solution de vitamine. (2)

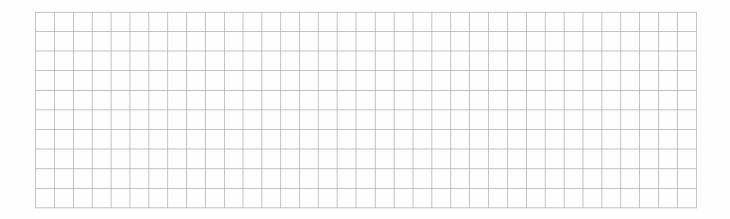

d) Déterminez le pH au point d'équivalence. (2,5)


Question 3: La vitamine C dans le commerce (4p)

Les comprimés de vitamine C contiennent la vitamine C sous forme d'acide ascorbique $C_6H_8O_6$ (pK_A = 4,17) et d'autre part sous forme d'ascorbate de sodium $C_6H_7O_6Na$. Un comprimé de vitamine C est dissous dans 100 mL d'eau, de sorte que la solution contient 0,0112 mol·L⁻¹ d'acide ascorbique et 1,77·10⁻³ mol d'ascorbate de sodium et a un pH de 4,37.

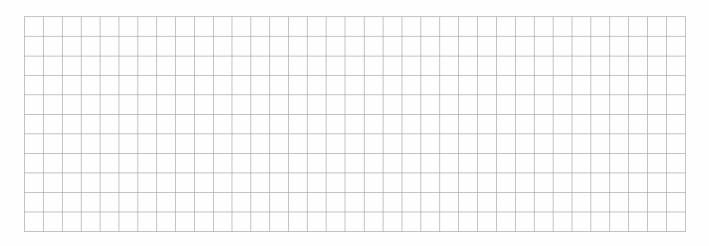
a) Décrivez le type de solution obtenue et expliquez sa propriété. (1)

b) Pour déterminer la réaction d'un tel comprimé dans l'estomac, on ajoute maintenant au laboratoire 20 mL d'acide chlorhydrique (c = 0,028 mol·L⁻¹) aux 100 mL de la solution préparée. Donnez l'équation de la réaction et calculez la variation de pH. (3)

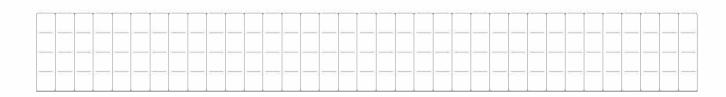


II. Réactions d'oxydoréduction et électrochimie (6 + 2 = 8 points)


Question 4: Série électrochimique (6p)


Vous disposez du matériel suivant:

- Electrode d'hydrogène standard, électrode d'argent, électrode d'or, électrode de zinc, câbles électriques, voltmètre, béchers, pont salin, bouchons.
- Solutions (chacune c = 1 mol·L⁻¹): chlorure d'argent (I), chlorure d'or (III), chlorure de zinc (II), acide chlorhydrique.
- a) Décrivez la structure de l'électrode standard à hydrogène. (1,5)



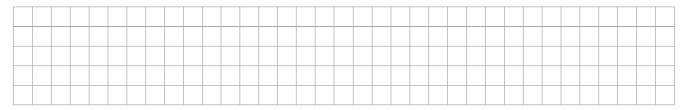
b) Déterminez, à partir du matériel dont vous disposez, l'élément galvanique qui peut recevoir la tension la plus élevée avec l'électrode standard à hydrogène. Justifiez votre démarche à l'aide de la série de potentiels standard (en annexe) et établissez les équations partielles des processus d'oxydation et de réduction pour les réactions qui se produisent et identifiez l'anode et la cathode. (2,5)

c) Indiquez l'écriture symbolique de l'élément galvanique créé. (1)

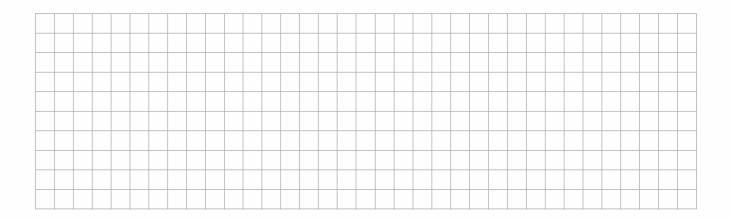
- d) Quelle affirmation concernant les éléments galvaniques avec l'électrode standard à hydrogène comme demi-cellule est correcte ? (1)
 - ☐ Les substances qui forment l'anode avec l'électrode standard à hydrogène sont de bons oxydants.
 - Les métaux qui se trouvent dans la série électrochimique au-dessus de (H_2/H_3O^+) sont réduits.
 - ☐ Les substances qui forment l'anode avec l'électrode standard à hydrogène réduisent les ions oxonium.
 - ☐ Les substances qui forment la cathode avec l'électrode standard à hydrogène oxydent les ions oxonium.

Question 5: La pile à combustible (2p)

La pile à combustible à électrolyte polymère contient également une demi-pile avec de l'hydrogène dans un électrolyte acide. L'électrolyte est ici constitué d'un polymère et sert de membrane d'échange de protons. Donnez les équations partielles de l'oxydation et de la réduction qui se produisent dans cette pile à combustible et identifiez l'anode et la cathode, ainsi que leur polarité. (2)

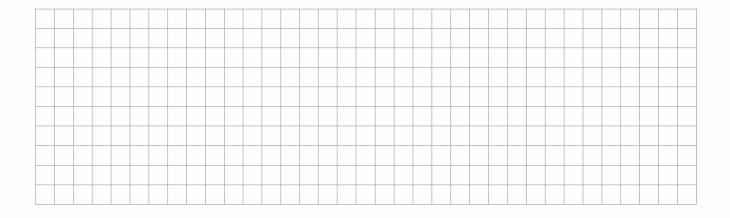


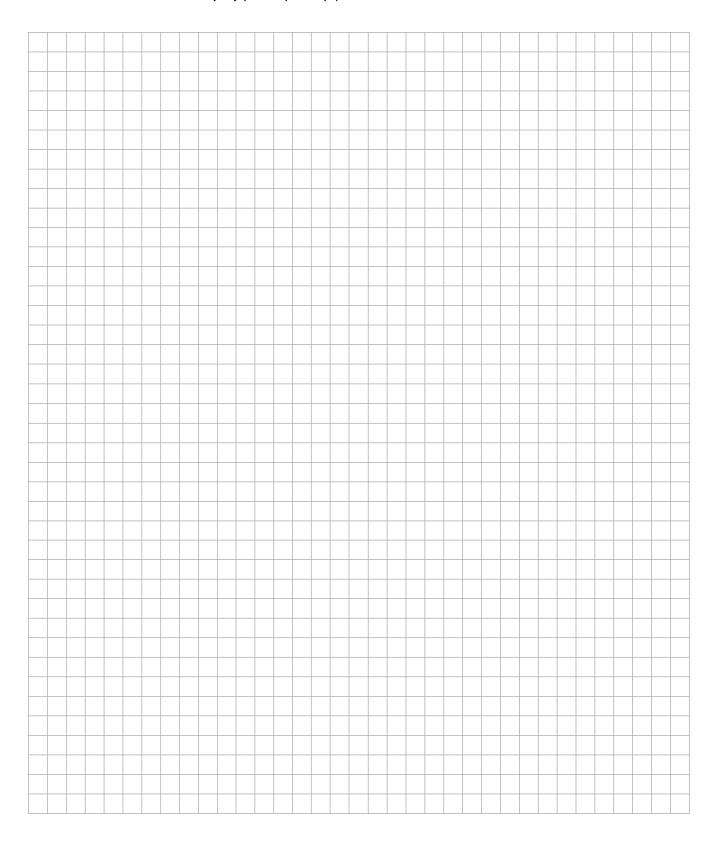
III. Chimie organique (11 + 7,5 + 12 + 4,5 = 35 points)


Question 6: Synthèse d'un halogénoalcane (11p)

Le 2-bromobutane est une substance appartenant au groupe des halogénoalcanes et est utilisé pour la fabrication de certains médicaments ou parfums.

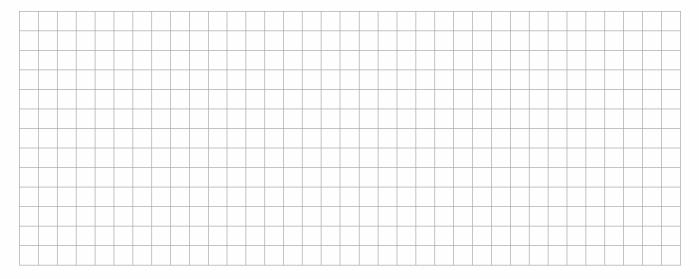
a) Donnez la formule en bâtonnets (squelettique) et marquez d'un astérisque l'atome de carbone asymétrique. (0,75)


b) Dessinez maintenant la structure de l'énantiomère (R) du 2-bromobutane en utilisant un dessin tridimensionnel et justifiez votre réponse en indiquant les priorités selon CIP. (1,25)


c) Qu'obtenez-vous lorsque le (R)-2-bromobutane est mélangé en proportions égales avec son énantiomère (S). Donnez une explication détaillée et indiquez les propriétés optiques d'un tel mélange. (2)

d) Donnez la formule en bâtonnets (squelettique) de l'isomère achiral du 2-bromobutane, avec la plus petite température d'ébullition. Nommez l'isomère et déterminez en détail le type d'isomèrie. (1)

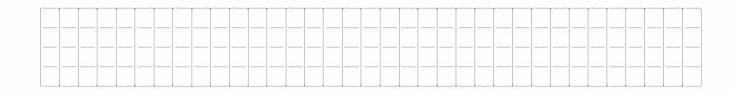
e) Pour la production du 2-bromobutane à partir d'un alcane, indiquez les conditions et le nom du mécanisme de réaction. Indiquez ensuite, à l'aide de formules semi-développées, la réaction d'initiation et la réaction en chaîne pour la production du 2-bromobutane. Nommez toutes les substances qui y participent. (4)


f) Pour la production du 2-bromobutane à partir d'un alcool, indiquez le nom du type de réaction et formulez l'équation globale à l'aide de formules semi-développées. Nommez toutes les substances impliquées. (2)

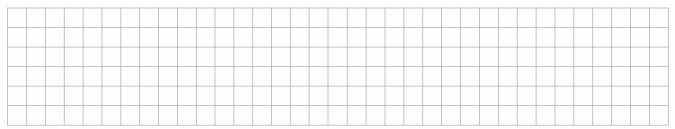
Question 7: Addition électrophile (7,5p)

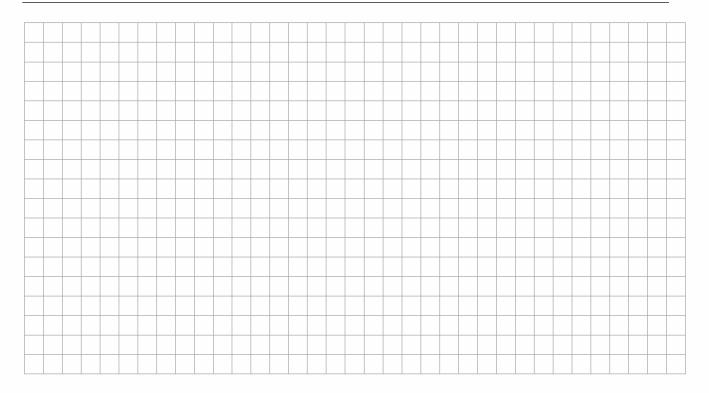
Le 2-bromobutane peut également être produit à partir du cis-but-2-ène, par addition électrophile de bromure d'hydrogène.

a) Donnez le mécanisme de réaction détaillé avec les formules en bâtonnets (squelettique) et avec des explications. (4)

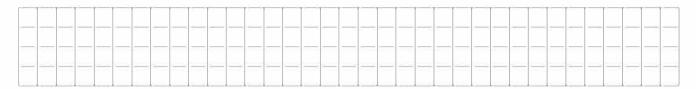

b) L'addition du bromure d'hydrogène sur le cis-but-2-ène est plus rapide que l'addition du bromure d'hydrogène sur le (Z)-2-fluorobut-2-ène. Justifiez cette observation en dessinant les deux molécules à l'aide de formules semi-développées et en détaillant les effets inductifs.

c) Donnez le nom du test qui permet de détecter la présence de 2-bromobutane dans un mélange (0,5)




Question 8: Nomenclature et propriétés chimiques des différentes classes de substances (12p)

a) Complétez le tableau en nommant les molécules A-D selon l'IUPAC (sans CIP), respectivement en dessinant la formule en bâtonnets (squelettique). (3)

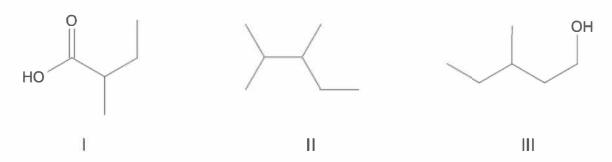

Nom	А	(E)-4-chloropent-3- énal	2-Aminopropanoate d'éthyle	D
Formule en bâtonnets	O NH ₂	В	С	CI

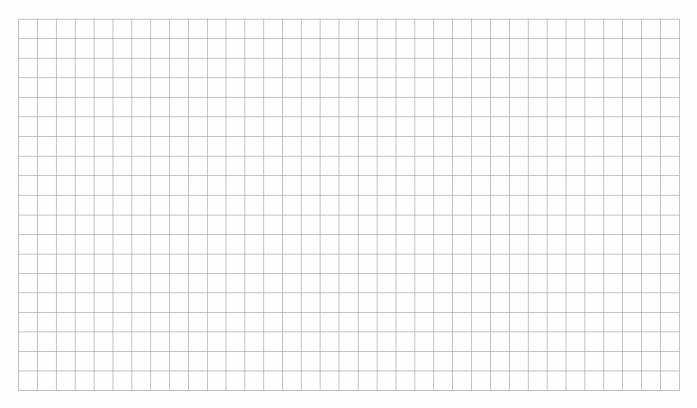
Marquez également tous les atomes de carbone asymétriques présents dans les formules en bâtonnets (squelettiques). (1)

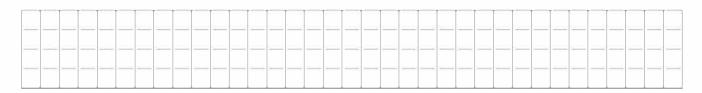
b) Indiquez les types d'isomérie dans les paires d'isomères possibles pour les molécules A-D.
 (0,5)

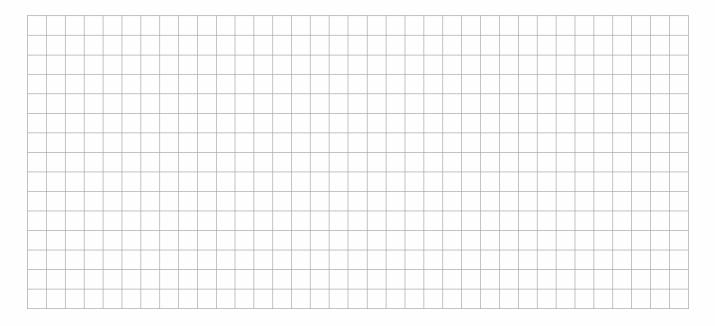
c) Dessinez pour la molécule D l'énantiomère correspondant à l'aide d'un dessin tridimensionnel et indiquez les priorités selon CIP. (1,5)

d) A l'aide des formules semi-développées, formulez l'équation redox pour la réaction de la molécule D avec l'oxyde de cuivre (II). Indiquez tous les nombres d'oxydation qui changent et nommez le produit organique. (2)


e) La molécule B est également soumise à une réaction d'oxydoréduction qui conduit à un miroir d'argent. Indiquez le nom de cette réaction et nommez la classe de substances pour laquelle cette réaction fonctionne exclusivement. Formulez ensuite les équations partielles générales de l'oxydation et de la réduction avec les nombres d'oxydation qui changent, ainsi que l'équation totale de cette réaction. (4)




Question 9: Composés organiques oxygénés (4,5p)


a) Classez les molécules suivantes par ordre croissant de leur température d'ébullition et justifiez en détail votre réponse. (2,5)

b) Les molécules I et III peuvent réagir ensemble pour former un ester. Donnez l'équation de la réaction de dissociation alcaline de l'ester avec des formules semi-développées et nommez l'ester. (2)

Liste avec des indicateurs colorés

indicateur coloré	forme acide	zone de virage	forme basique	p <i>K</i> a(HIn)
bleu de thymol	rouge	1,2 - 2,8	jaune	1,7
orange de méthyle	orange	3,1 – 4,4	jaune	3,4
vert de bromocrésol	jaune	3,8 - 5,4	bleu	4,7
rouge de méthyle	rouge	4,2 - 6,3	jaune	5,0
bleu de bromothymol	jaune	6,0 - 7,7	bleu	7,1
bleu de thymol	jaune	8,0 – 9,6	bleu	8,9
phénolphtaléine	incolore	8,2 - 10	rouge	9,4
thymolphtaléine	incolore	9,3 - 10,5	bleu	10,0
jaune d'alizarine R	jaune	10,1 - 12,1	rouge	11,2

Formules pour le calcul du pH

Acides forts HA
pH =
$$-log[H_3O^+] = -log[HA]_0$$

$$pH = \frac{1}{2} (pK_A - log[HA]_0)$$

Bases fortes A-

$$pOH = -log[OH^{-}] = -log[A^{-}]_{0}$$

 $pH = 14 - pOH = 14 + log[A^{-}]_{0}$

Bases faibles A-

$$pOH = \frac{1}{2} (pK_B - log[A^-]_0)$$

 $pH = 14 - pOH = 14 - \frac{1}{2} (pK_B - log[A^-]_0)$

Solutions tampon

$$pH = pK_A + log \frac{[A^-]}{[HA]} = pK_A + log \frac{n(A^-)}{n(HA)}$$

Table avec les pK_A et pK_B en solution aqueuse à 25 °C

р <i>К</i> А	acide		ba	ase correspondante	р <i>К</i> в
Pr	acide perchlorique	HClO₄	CIO ₄ -	ion perchlorate	Þ
oto	acide iodhydrique	HI	1-	ion iodure	ucu
lyse	acide bromhydrique	bromhydrique HBr		ion bromure	ne p
Protolyse complète	acide chlorhydrique	HCI	CI ⁻	ion chlorure	Aucune protolyse
ηplè	acide sulfurique	H₂SO₄	HSO₄ ⁻	ion hydrogénosulfate	olys
ře	acide nitrique	HNO ₃	NO ₃ ⁻	ion nitrate	е
	ion oxonium	H₃O⁺	H₂O	eau	
1,42	acide oxalique	$H_2C_2O_4$	HC ₂ O ₄ ⁻	ion hydrogénooxalate	12,58
1,92	ion hydrogénosulfate	HSO ₄ -	SO ₄ ²⁻	ion sulfate	12,08
2,13	acide phosphorique	H ₃ PO ₄	H₂PO₄ ⁻	ion dihydrogénophosphate	11,87
2,22	ion hexaaqua fer(III)	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	ion pentaaqua hydroxo fer(III)	11,78
3,14	acide fluorhydrique	HF	F ⁻	ion fluorure	10,86
3,35	acide nitreux	HNO ₂	NO ₂ -	ion nitrite	10,65
3,75	acide formique (acide méthanoïque)	нсоон	HCOO-	ion méthanoate (formiate)	10,25
4,75	acide acétique (acide éthanoïque)	CH₃COOH	CH₃COO⁻	ion éthanoate (acétate)	9,25
4,85	ion hexaaqua aluminium	[AI(H ₂ O) ₆] ³⁺	[AI(OH)(H ₂ O) ₅] ²⁺	ion pentaaqua hydroxo aluminium	9,15
6,52	acide carbonique	H ₂ CO ₃	HCO₃ ⁻	ion hydrogénocarbonate	7,48
6,92	acide sulfhydrique sulfure d'hydrogène	H₂S	HS ⁻	ion hydrogénosulfure	7,08
7,00	ion hydrogénosulfite	HSO ₃ -	SO ₃ ²⁻	ion sulfite	7,00
7,20	ion dihydrogénophosphate	H ₂ PO ₄ ⁻	HPO ₄ ²⁻	ion hydrogénophosphate	6,80
9,25	ion ammonium	NH ₄ ⁺	NH ₃	ammoniaque	4,75
9,40	acide cyanhydrique cyanure d'hydrogène	HCN	CN-	ion cyanure	4,60
10,40	ion hydrogénocarbonate	HCO₃⁻	CO ₃ ²⁻	ion carbonate	3,60
11,62	peroxyde d'hydrogène	H ₂ O ₂	HO ₂ -	ion peroxyde d'hydrogène	3,38
12,36	ion hydrogénophosphate	HPO ₄ ²⁻	PO ₄ 3-	ion phosphate	1,64
13,00	ion hydrogénosulfure	HS ⁻	S ²⁻	ion sulfure	1,00
	eau	H₂O	OH-	ion hydroxyde	
Ą	éthanol	CH₃CH₂OH	CH₃CH₂O⁻	ion éthanolate	Pro
cun	méthanol	CH₃OH	CH₃O ⁻	ion méthanolate	toly
Aucune protolyse	ammoniaque	NH ₃	NH ₂ -	ion amide	Protolyse complète
otol	ion hydroxyde	OH-	O ²⁻	ion oxyde	dwo
yse	hydrogène	H ₂	H-	ion hydrure	lète

Potentiels standard à 25 °C

Red	=	Ox + n e ⁻	<i>E</i> ⊖ / V
2 F ⁻ (aq)	≓	$F_2(g) + 2 e^-$	+2,87
2 SO ₄ ²⁻ (aq)	⇌	$S_2O_8^{2-}(aq) + 2e^-$	+2,00
4 H ₂ O(I)	=	$H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^-$	+1,78
$PbSO_4(s) + 5 H_2O(l)$	=	$PbO_2(s) + HSO_4^-(aq) + 3 H_3O^+(aq) + 2 e^-$	+1,69
$MnO_2(s) + 6 H_2O(l)$	\rightleftharpoons	$MnO_4^-(aq) + 4 H_3O^+(aq) + 3 e^-$	+1,68
$Mn^{2+}(aq) + 12 H_2O(I)$	\rightleftharpoons	$MnO_4^-(aq) + 8 H_3O^+(aq) + 5 e^-$	+1,49
$Pb^{2+}(aq) + 6 H_2O(I)$	=	$PbO_2(s) + 4 H_3O^+(aq) + 2 e^-$	+1,46
Au(s)	\rightleftharpoons	Au ³⁺ (aq) + 3 e ⁻	+1,42
2 Cl ⁻ (aq)	\rightleftharpoons	$Cl_2(g) + 2 e^-$	+1,36
2 Cr ³⁺ (aq) + 21 H ₂ O(I)	\rightleftharpoons	$Cr_2O_7^{2-}(aq) + 14 H_3O^+(aq) + 6 e^-$	+1,33
6 H ₂ O(I)	\rightleftharpoons	$O_2(g) + 4 H_3O^+(aq) + 4 e^-$	+1,23
$Mn^{2+}(aq) + 6 H_2O(I)$	\rightleftharpoons	$MnO_2(s) + 4 H_3O^+(aq) + 2 e^-$	+1,21
Pt(s)	=	Pt ²⁺ (aq) + 2 e ⁻	+1,20
$I_2(s) + 18 H_2O(I)$	\rightleftharpoons	2 IO₃⁻(aq) + 12 H₃O⁺(aq) + 10 e⁻	+1,20
2 Br ⁻ (aq)	\rightleftharpoons	Br ₂ (aq) + 2 e ⁻	+1,07
NO(g) + 6 H2O(I)	\rightleftharpoons	$NO_3^-(aq) + 4 H_3O^+(aq) + 3 e^-$	+0,96
Hg(I)	\rightleftharpoons	Hg ²⁺ (aq) + 2 e ⁻	+0,85
Ag(s)	\rightleftharpoons	Ag ⁺ (aq) + e ⁻	+0,80
2 Hg(I)	=	$Hg_2^{2+}(aq) + 2 e^-$	+0,80
Fe ²⁺ (aq)	\rightleftharpoons	Fe ³⁺ (aq) + e ⁻	+0,77
$H_2O_2(aq) + 2 H_2O(I)$	\rightleftharpoons	$O_2(g) + 2 H_3O^+(aq) + 2 e^-$	+0,68
$MnO_2(s) + 4 OH^-(aq)$	\rightleftharpoons	$MnO_4^-(aq) + 2 H_2O(I) + 3 e^-$	+0,59
2 I⁻(aq)	\rightleftharpoons	$I_2(s) + 2 e^-$	+0,54
Cu(s)	\rightleftharpoons	Cu ⁺ (aq) + e ⁻	+0,52
$Cl_2(g) + 4 OH^-(aq)$	=	$2 \text{ OCI}^-(\text{aq}) + 2 \text{ H}_2 \text{O(I)} + 2 \text{e}^-$	+0,42
4 OH ⁻ (aq)	=	$O_2(g) + 2 H_2O(l) + 4 e^-$	+0,40
2 Ag(s) + 2 OH ⁻ (aq)	=	$Ag_2O(s) + H_2O(l) + 2e^{-l}$	+0,34
Cu(s)	=	Cu ²⁺ (aq) + 2 e ⁻	+0,34
2 Hg(I) + 2 Cl ⁻ (aq)	=	$Hg_2Cl_2(s) + 2e^{-s}$	+0,27
$Ag(s) + Cl^{-}(aq)$	≠	AgCl(s) + e ⁻	+0,22
$H_2SO_3(aq) + 5 H_2O(l)$,	$SO_4^{2-}(aq) + 4 H_3O^+(aq) + 2 e^-$	+0,20
Cu ⁺ (aq)	≠,	$Cu^{2+}(aq) + e^{-}$	+0,16
$H_2S(g) + 2 H_2O(1)$	=	$S(s) + 2 H_3O^+(aq) + 2 e^-$	+0,14
$Ag(s) + Br^{-}(aq)$	7	AgBr(s) + e ⁻	+0,07
$H_2(g) + 2 H_2O(I)$	‡ ‡	2 H ₃ O⁺(aq) + 2 e⁻ Fo³⁺(aq) + 3 o⁻	+0,00
Fe(s)		Fe ³⁺ (aq) + 3 e ⁻	-0,04
Pb(s)	=	$Pb^{2+}(aq) + 2e^{-}$	-0,13
Sn(s)	=	$Sn^{2+}(aq) + 2e^{-}$	-0,14
$H_2O_2(aq) + 2 OH^-(aq)$	=	$O_2(g) + 2 H_2O(I) + 2 e^{-}$	-0,15
$Ag(s) + I^{-}(aq)$,	Agl(s) + e ⁻	-0,15
Ni(s)	≠,	Ni ²⁺ (aq) + 2 e ⁻	-0,23
Pb(s) + $SO_4^{2^-}$ (aq)	≠	PbSO ₄ (s) + 2 e ⁻	-0,36
Cd(s)	≠	$Cd^{2+}(aq) + 2e^{-}$	-0,40
Fe(s)	=	Fe ²⁺ (aq) + 2 e ⁻	-0,41
Zn(s)	7	Zn ²⁺ (aq) + 2 e ⁻	-0,76
$H_2(g) + 2 OH^-(aq)$ $SO_3^{2-}(aq) + 2 OH^-(aq)$	1	2 H ₂ O(I) + 2 e ⁻ SO ₄ ²⁻ (aq) + H ₂ O(I) + 2 e ⁻	-0,83 -0,92
$N_2H_4(aq) + 4 OH^-(aq)$	+	$N_2(g) + 4 H_2O(l) + 4 e^-$	-0,92 -1,16
Al(s)	+	$A_{13}^{+}(aq) + 3 e^{-}$	-1,16 -1,66
Mg(s)	+	$Mg^{2+}(aq) + 2e^{-}$	-1,00 -2,38
Na(s)	+	Na ⁺ (aq) + e ⁻	-2,38 -2,71
Ca(s)	 	Ca ²⁺ (aq) + 2 e ⁻	-2,76
Ba(s)	 	Ba ²⁺ (aq) + 2 e ⁻	-2,70 -2,90
K(s)	=	K⁺(aq) + e⁻	-2,92
Li(s)	-	Li ⁺ (aq) + e ⁻	-3,02
	` '	- (-4)	3,02

Standardpotenziale bei 25 ℃

Red	=	Ox + n e ⁻	EΘ/V
Li(s)	≠	Li*(aq) + e ⁻	-3,02
K(s)	=	K ⁺ (aq) + e ⁻	-2,92
Ba(s)	,	Ba ² *(aq) + 2 e ⁻	-2,90
Ca(s)	=	Ca ² *(aq) + 2 e ⁻	-2,76
Na(s)	=	Na*(aq) + e	-2,71
Mg(s)	=	Mg ² *(aq) + 2 e ⁻	-2,38
Al(s)	=	Al ³⁺ (aq) + 3 e ⁻	-1,66
N ₂ H ₄ (aq) + 4 OH ⁻ (aq)	=	N ₂ (g) + 4 H ₂ O(l) + 4 e ⁻	-1,16
$SO_3^{2-}(aq) + 2 OH^{-}(aq)$	=	$SO_4^{2-}(aq) + H_2O(1) + 2e^{-}$	-0,92
$H_2(g) + 2 OH^-(aq)$	=	2 H ₂ O(I) + 2 e ⁻	-0,83
Zn(s)	=	Zn ²⁺ (aq) + 2 e ⁻	-0,76
Fe(s)	=	Fe ²⁺ (aq) + 2 e ⁻	-0,41
Cd(s)	\rightleftharpoons	Cd ²⁺ (aq) + 2 e ⁻	-0,40
$Pb(s) + SO_4^{2-}(aq)$	=	PbSO ₄ (s) + 2 e ⁻	-0,36
Ni(s)	=	Ni ²⁺ (aq) + 2 e ⁻	-0,23
$H_2O_2(aq) + 2 OH^-(aq)$	=	$O_2(g) + 2 H_2O(l) + 2 e^-$	-0,15
$Ag(s) + I^{-}(aq)$	=	Agl(s) + e ⁻	-0,15
Sn(s)	\rightleftharpoons	Sn ²⁺ (aq) + 2 e ⁻	-0,14
Pb(s)	\rightleftharpoons	Pb ² *(aq) + 2 e ⁻	-0,13
Fe(s)	=	$Fe^{3+}(aq) + 3 e^{-}$	-0,04
$H_2(g) + 2 H_2O(l)$	=	2 H₃O⁺(aq) + 2 e⁻	0
$Ag(s) + Br^{-}(aq)$	\rightleftharpoons	$AgBr(s) + e^{-}$	0,07
$H_2S(g) + 2 H_2O(I)$	=	S(s) + 2 H ₃ O ⁺ (aq) + 2 e ⁻	0,14
Cu+(aq)	=	Cu ²⁺ (aq) + e ⁻	0,16
$H_2SO_3(aq) + 5 H_2O(1)$	\rightleftharpoons	$5O_4^{2-}(aq) + 4 H_3O^+(aq) + 2 e^-$	0,20
Ag(s) + Cl ⁻ (aq)	=	AgCl(s) + e ⁻	0,22
2 Hg(l) + 2 Cl ⁻ (aq)	=	$Hg_2Cl_2(s) + 2e^{-s}$	0,27
2 Ag(s) + 2 OH ⁻ (aq)	=	$Ag_2O(s) + H_2O(1) + 2 e^{-s}$	0,34
Cu(s)	\rightleftharpoons	Cu ²⁺ (aq) + 2 e ⁻	0,34
4 OH-(aq)	=	$O_2(g) + 2 H_2O(l) + 4 e^{-l}$	0,40
Cl ₂ (g) + 4 OH"(aq)	→	2 OCI⁻(aq) + 2 H₂O(I) + 2e⁻	0,42
Cu(s)	_	Cu*(aq) + e ⁻	0,52 0,54
2 (-(aq) MnO ₂ (s) + 4 OH-(aq)	≠	$I_2(s) + 2 e^-$ MnO ₄ ⁻ (aq) + 2 H ₂ O(I) + 3 e ⁻	0,54
$H_2O_2(aq) + 2 H_2O(l)$	-	$O_2(g) + 2 H_3O^+(aq) + 2 e^-$	0,59
Fe ²⁺ (aq)	+	Fe ³⁺ (aq) + e ⁻	0,08
Ag(s)	=	Ag*(aq) + e ⁻	0,80
2 Hg(l)	=	Hg ₂ ² *(aq) + 2 e ⁻	0,80
Hg(I)	=	Hg ^{2*} (aq) + 2 e ⁻	0,85
NO(g) + 6 H ₂ O(I)	=	NO ₃ ⁻ (aq) + 4 H ₃ O ⁺ (aq) + 3 e ⁻	0,96
2 Br ⁻ (aq)	=	Br ₂ (aq) + 2 e ⁻	1,07
Pt(s)	=	Pt ² *(aq) + 2 e ⁻	1,20
$I_2(s) + 18 H_2O(l)$	=	2 IO ₃ -(aq) + 12 H ₃ O+(aq) + 10 e-	1,20
$Mn^{2+}(aq) + 6 H_2O(1)$	=	$MnO_2(s) + 4 H_3O^+(aq) + 2 e^-$	1,21
6 H ₂ O(I)	=	$O_2(g) + 4 H_3O^+(aq) + 4 e^-$	1,23
2 Cr3+(aq) + 21 H2O(I)	=	$Cr_2O_7^2$ -(aq) + 14 H ₃ O ⁺ (aq) + 6 e ⁻	1,33
2 Cl ⁻ (aq)	\rightleftharpoons	Cl ₂ (g) + 2 e ⁻	1,36
Au(s)	\rightleftharpoons	Au ³⁺ (aq) + 3 e ⁻	1,42
$Pb^{2+}(aq) + 6 H_2O(I)$	=	PbO ₂ (s) + 4 H ₃ O ⁺ (aq) + 2 e ⁻	1,46
Mn ²⁺ (aq) + 12 H ₂ O(I)	\rightleftharpoons	$MnO_4^-(aq) + 8 H_3O^*(aq) + 5 e^-$	1,49
$MnO_2(s) + 6 H_2O(I)$	\rightleftharpoons	$MnO_4^-(aq) + 4 H_3O^*(aq) + 3 e^-$	1,68
$PbSO_4(s) + 5 H_2O(l)$	\rightleftharpoons	$PbO_2(s) + HSO_4(aq) + 3 H_3O(aq) + 2 e^{-1}$	1,69
4 H ₂ O(I)	\rightleftharpoons	$H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^-$	1,78
2 SO ₄ ²⁻ (aq)	\rightleftharpoons	$S_2O_8^2-(aq) + 2 e^-$	2,00
2 F ⁻ (aq)	\rightleftharpoons	$F_2(g) + 2 e^-$	2,87

Tableau périodique des éléments chimiques

2	He	4,0026	10	Ne	20,179	18	Ar	39,948	36	Kr	× × ×	2, 2	Xe	131,3	98	Rn	222				71	Lu	174,97	103	Ľ	260
VIII A		VII A	6	Ή	18,9984	17	Image: control of the	35,453	35	Br	79 904	53	ı	126,9045	82	At	210				02	Χb	173,04	102	S N	259
		VI A	8	0	15,9994	91	S	32,06	34	Se	% % %	52	Te	127,6	84	Po	209				69	Tm	168,9342	101	Md	258
		V A	7	Z	14,0067	15	Ь	30,97376	33	As	74 9716	51	Sb	121,75	83	Bi	208,9804				89	Er	197,26	100	Fm	257
		IV A	9	ပ	12,011	14	Si	28,086	32	Ge	27 59	505	Sn	118,69	82	Pb	207,2				19	Но	164,9304	66	Es	254
		III A	5	В	10,81	13	Al	26,98154	31	Ga	69	49	In	114,82	81	I	204,37				99	Dy	162,5	86	Ct	251
								II B	30	Zn	85 38	48	Cd	112,4	80	Hg	200,59				99	$\mathbf{T}\mathbf{b}$	158,9254	76	Bk	249
								IB	29	Cu	63 546	47	Ag	107,868	62	Au	196,9665				49	P.S	157,25	96	Cm	247
								VIII B	28	Z	58.71	46	Pd	106,4	28	F	195,09				63	Eu	151,96	95	Am	243
								VIII B	77	ပိ	58 9332	45	Rh	102,9055	11	ij	192,22	109	တာ	267	62	Sm	150,4	8	Pu	244
								VIII B	26	Fe	55 847	44	Ru	101,07	9/	Os	190,2	108	w.	265	19	Pm	145	93	ď	237,0482
								VII B	25	Mn	27 038	43	Tc	98,9062	75	Re	186,2	107	w.	292	8	PN	144,24	92	ם	238,029
								VI B	24	Ç	51 996	42	Mo	95,94	74	*	183,85	901	တာ	263	- 65	Pr	140,9077	91	Pa	231,0359
								V B	23	>	50 9414	41	S P	92,9064	73	Ta	180,9479	105	so.	262	28	Ce	140,12	06	Th	232,0381
								IV B	22	Ti	9 47 9	, 8	Zr	91,22	72	Hľ	178,49	104	တာ	261						
								III B	21	Sc	0550	39	Y	88,9059	23	La	138,9055	68	Ac	227,03						
ΙΥ		ПΑ	4	Be	9,01218	12	Mg	24,305	20	Ca	40.08	38	Sr	87,62	99	Ba	137,34	88	Ra	226,0254						
-	Н	1,0079	3	ï	6,941	11	Na	77686,22	19	K	30 098	37	Rb	85,4578	25	C	132,9054	83	Fr	223						

Nomenclature organique : Liste de priorité des fonctions

fonction	suffixe	préfixe
acide carboxylique	acideoïque	carboxy
ester	oate d'yle	
aldéhyde	al	охо
cétone	one	oxo
alcool	ol	hydroxy
amine	amine	amino
alcène	ène	
halogène	/	halogéno