EXAMEN DE FIN D'ÉTUDES SECONDAIRES – Sessions 2024 QUESTIONNAIRE										
Date : 07.06.24 Horaire : 08:15 - 10:45 Durée : 150 minutes										
Discipline :	e: CHIMI Type:		écrit	Section(s) :	GA3D					
		•	•	•	Numéro du candidat :					

I. <u>Massenwirkungsgesetz (18P.)</u>

1. Gleichgewichtsreaktion (1+1+4=6 P.)

Wasserstoff und Kohlenstoffdioxid reagieren in einer Gleichgewichtsreaktion zu Wasserdampf und Kohlenstoffmonoxid. Die Reaktion findet bei 70°C in einem 1L Kolben statt.

$$H_{2 (g)} + CO_{2 (g)} \rightleftharpoons H_{2}O_{(g)} + CO_{(g)}$$

- a. Formulieren Sie das Massenwirkungsgesetz ausgehend von der Reaktionsgleichung.
- b. Wie verändert sich das Gleichgewicht, wenn man Kohlenstoffmonoxid aus dem Reaktionsgemisch entfernt? Begründen Sie ihre Antwort.
- c. Es werden 0,75 mol Wasserstoff und 0,75 mol Kohlenstoffdioxid zur Reaktion gebracht. Nach Einstellen des chemischen Gleichgewichts befinden sich 0,43 mol Kohlenstoffdioxid im Gasgemisch. Berechnen Sie die Stoffmengenkonzentrationen aller Reaktionsteilnehmer im Gleichgewicht so wie die Gleichgewichtskonstante K_c bei 700°C.

2. Synthese von lodwasserstoff (1+2+2+1=6P.)

Wasserstoff und lod reagieren in einer Gleichgewichtsreaktion zu lodwasserstoff. Alle Stoffe sind gasförmig bei den angegebenen Temperaturen.

$$H_{2 (g)} + I_{2 (g)} \rightleftharpoons 2HI_{(g)}$$

- a. Formulieren Sie das Massenwirkungsgesetz ausgehend von der Reaktionsgleichung.
- b. Formulieren Sie das Prinzip von Le Chatelier.
- c. Beim Durchführen der Synthesereaktion bei 298K beträgt die Gleichgewichtskonstante 794. Bei 700 K, jedoch nur K_c = 54. Verläuft die Hinreaktion exo oder endotherm? Begründen Sie Ihre Antwort.
- d. Formulieren Sie das Massenwirkungsgesetz für die Zersetzung von lodwasserstoff und berechnen Sie die Gleichgewichtskonstante für diese Reaktion bei 700K.

3. Essigsäurepentylester (6P.)

Das natürliche Birnenaroma enthält Essigsäurepentylester. Die Esterbildung verläuft unter folgender Reaktion: $CH_3COOH + C_5H_{11}OH \rightarrow CH_3COOC_5H_{11} + H_2O$

4mol Essigsäure und 176 g Pentanol werden erhitzt. Das Gesamtvolumen beträgt 2 L. Die Gleichgewichtskonstante beträgt $K_c = 39,5$. Berechnen Sie die Konzentrationen aller Stoffe nach Erreichen des Gleichgewichts.

II. <u>Elektrochemie (20 P.)</u>

4. Redoxreaktionen (2+2+2=6P.)

Geben Sie an, ob bei folgenden Beispielen eine spontane Reaktion stattfindet. Wenn ja, formulieren Sie die entsprechenden Gleichungen (Teilgleichungen und Gesamtgleichung).

- a. Ein Bleistab taucht in eine Zinn(II)-chlorid Lösung ein.
- b. Eine Lösung mit Fe²⁺ wird mit einer sauren Lösung mit IO₃- vermischt.
- c. Nickelblech taucht in eine Kuper(II)-sulfat Lösung ein.

5. <u>Elektrolyse einer Salzlösung (2,5+2+1+0,5=6P.)</u>

An zwei Graphitelektroden wird eine Mangan(II)-bromid-Lösung unter Gleichspannung elektrolysiert.

a. Formulieren Sie die entsprechenden Redox-Gleichungen (Teilgleichungen sowie die Gesamtgleichung) der Elektrolyse. Benennen Sie die Pole.

Nach der Elektrolyse werden beide Elektroden mit einem Spannungsmessgerät verbunden.

- b. Formulieren Sie die entsprechenden Redox-Gleichungen (Teilgleichungen sowie die Gesamtgleichung). Benennen Sie die Pole.
- c. Geben sie die Notierung der galvanischen Zelle an.
- d. Berechnen Sie die gemessene Spannung.

6. Korrosion (4+2+2=8P.)

- a. Formulieren Sie die Teilgleichungen zu den Redoxprozessen bei der Sauerstoffkorrosion von Eisen.
- b. Erklären Sie, worauf sich die Schutzwirkung beruht, wenn man das Eisen mit einem edleren, bzw. einem unedleren Metal überzieht.
- c. Erklären Sie, wieso mit Zinn überzogenes Eisen bei Kratzern rascher korrodiert als ungeschütztes Eisen.

III. Säuren und Basen (22P.)

7. pH-Berechnungen (2+2+2=6P.)

Berechnen Sie den pH-Wert von folgenden wässrigen Lösungen:

- a. 10 mL einer Amseisensäure-Lösung der Stoffmengenkonzentration c= 0,1 mol/L werden auf
 50 mL Lösung verdünnt.
- b. 3,5 g festes Calciumhydroxid in 500 mL Lösung.
- c. 30 g Natriumdihydrogenphosphat und 0,3 mol Phosphorsäure in 500 mL Wasser.

8. Verdünnung (3P.)

Die Konzentration einer Natronlauge beträgt c_0 =0,5 mol/L. Man möchte daraus durch Verdünnung 250 mL einer Lösung herstellen, deren pH-Wert 12 beträgt. Berechnen Sie das Volumen der 0,5 molaren Natronlaugelösung, welche man dazu braucht.

9. <u>Titration (1+2+2+2+2=9P.)</u>

50mL Essigsäurelösung werden mit Kaliumhydroxid-Lösung c_o=1mol/L neutralisiert. Der Äquivalenzpunkt wird nach Zugabe von 30 mL Kalilauge erreicht.

- a. Formulieren Sie die Reaktionsgleichung für die Neutralisation.
- b. Berechnen Sie die Ausgangskonzentration der Essigsäure. Welchen pH-Wert hatte die Essigsäure vor der Titration.
- c. Formulieren Sie die Autoprotolysegleichung des Wassers und die Protolysegleichung der Essigsäure. Ordnen Sie alle in der Essigsäurelösung vorhandenen Teilchen nach steigenden Konzentrationen.
- d. Welcher Charakter hat die Lösung am Äquivalenzpunkt? Begründen Sie die Antwort mit den vorhandenen Teilchen und der Protolysegleichung.
- e. Berechnen Sie den pH-Wert der Lösung nach der Zugabe von 15 mL Kaliumhydroxid-Lösung. Erklären Sie.

10. Unbekannte Säure (4P.)

Eine unbekannte schwache Säure hat eine Konzentration von $c_0 = 1$ mol/L und einen pH-Wert pH=6,5. Bestimmen Sie den pKs-Wert der Säure und geben Sie anschließend an um welche Säure es sich handelt (Name und Formel). Geben sie alle verwendeten Näherungen an.

Reduktionsmittel	Oxidationsmittel + z e ⁻	Standardredoxpotential E ⁰ (in Volt)
	F ₂ + 2 e ⁻	+ 2,87
	5 ₂ O ₈ ²⁻ +2e ⁻	+ 2,00
	H ₂ O ₂ + 2 H* + 2 e ⁻	+ 1,78
	PbO ₂ + HSO ₄ ⁻ + 3 H ⁺ + 2 e ⁻	+ 1,69
	MnO ₄ ⁻ + 4 H ⁺ + 3 e ⁻	+ 1,68
	MnO4 ⁻ + 8 H* + 5 e ⁻	+ 1,49
	PbO ₂ + 4 H* + 2 e ⁻	+ 1,46
	Au 3+ + 3 e-	+ 1,42
	Cl ₂ +2e	+ 1,36
	Cr ₂ O ₇ ² + 14 H ⁺ + 6 e ⁻	+ 1,33
	O ₂ + 4 H* + 4 e ⁻	+ 1,23
	MnO ₂ + 4 H ⁺ + 2 e ⁻	+ 1,23
	Pt 2+ 2 e-	+ 1,21
	2 IO ₃ + 12 H ⁺ + 10 e ⁻	
		+1,20
	Br ₂ + 2 e ⁻	+ 1,07
	NO ₃ - + 4 H* + 3 e ⁻	+ 0,96
	Hg ²⁺ + 2 e ⁻	+ 0,85
	Ag* + e-	+ 0,80
	Hg2 ²⁺ + 2 e ⁻	+ 0,80
	Fe 3+ + e-	+ 0,77
	O ₂ + 2 H ⁺ + 2 e ⁻	+ 0,68
	MnO ₄ -+ 2 H ₂ O + 3 e ⁻	+ 0,59
	I ₂ +2e ⁻	+ 0,54
	Cu ⁺ +e ⁻	+ 0,52
	O ₂ + 2 H ₂ O + 4 e ⁻	+ 0,40
=	Ag ₂ O + H ₂ O + 2 e ⁻	+ 0,34
	Cu ²⁺ + 2 e ⁻	+ 0,34
	Hg ₂ Cl ₂ + 2 e ⁻	+ 0,27
_	AgCl + e ⁻	+ 0,22
	50 ₄ ²⁻ + 4 H ⁺ + 2 e ⁻	+ 0,20
	Cu ²⁺ + e ⁻	+ 0,16
	5 + 2 H ⁺ + 2 e ⁻	+ 0,14
	AgBr + e ⁻	+ 0,07
	2 H ⁺ + 2 e ⁻	0
	Fe ³⁺ + 3 e ⁻	-0,04
	Pb ²⁺ + 2 e ⁻	-0,13
Sn	Sn ²⁺ + 2 e ⁻	-0,14
	O ₂ + 2 H ₂ O + 2e ⁻	-0,15
	AgI + e ⁻	-0,15
	Ni ²⁺ + 2 e ⁻	-0,23
	PbSO ₄ + 2 e ⁻	-0,36
	Cd ²⁺ + 2 e ⁻	-0,40
	Fe ²⁺ + 2 e ⁻	-0,41
	Zn ²⁺ + 2 e ⁻	-0,76
	2 H ₂ O + 2 e ⁻	-0,83
50 ₃ ²⁻ + 2 OH-	504 ²⁻ + H ₂ O + 2e ⁻	-0,92
N ₂ H ₄ + 4 OH ⁻	N ₂ + 4 H ₂ O + 4 e ⁻	-1,16
	Al ³⁺ + 3 e⁻	-1,66
Мд	Mg ²⁺ + 2 e ⁻	-2,38
Na	Na⁺+e⁻	-2,71
Ca	Ca ²⁺ + 2 e ⁻	-2,76
Ва	Ba ²⁺ + 2 e ⁻	-2,90
K	K* + e⁻	-2,92
Li	Li⁺ + e⁻	-3,02

pK _s	Säure		Korrespondierende Base					
	Perchlorsäure	HClO ₄	ClO ₄	Perchlorat-Ion				
pe .	Iodwasserstoffsäure	НІ	Γ	Iodid-Ion] mue			
dige bgal	Bromwasserstoffsäure	HBr	Br	Bromid-Ion	Keine Protonenaufnahme			
stän	Salzsäure	HC1	C1 ⁻	Chlorid-Ion				
Vollständige Protonenabgabe	Schwefelsäure	H ₂ SO ₄	HSO ₄	Hydrogensulfat-Ion				
P. F.	Oxonium-Ion	$H_3O^+ (H^+ + H_2O)$	H_2O	Wasser	Proj			
	Salpetersäure	HNO ₃	NO_3	Nitrat-Ion				
1,92	Hydrogensulfat-Ion	HSO ₄ -	SO ₄ ²⁻	Sulfat-Ion	12,08			
2,13	Phosphorsäure	H ₃ PO ₄	$H_2PO_4^-$	Dihydrogenphosphat-Ion	11,87			
2,22	Hexaqua-Eisen(III)-Ion	$[Fe(H_2O)_6]^{3+}$	$[Fe(OH)(H_2O)_5]^{2+}$	Pentaqua-hydroxo-Eisen(III)-Ion	11,78			
3,14	Flusssäure (Fluorwasserstoffsäure)	HF	F-	Fluorid-Ion	10,86			
3,35	Salpetrige Säure	HNO_2	NO_2^-	Nitrit-Ion	10,65			
3,75	Ameisensäure (Methansäure)	нсоон	HCOO-	Formiat-Ion (Methanoat-Ion)	10,25			
4,75	Essigsäure (Ethansäure)	СН₃СООН	CH ₃ COO	Acetat-Ion (Ethanoat-Ion)	9,25			
4,85	Hexaqua-Aluminium-Ion	$[Al(H_2O)_6]^{3+}$	$[Al(OH)(H_2O)_5]^{2+}$	Pentaqua-hydroxo-Aluminium-Ion	9,15			
6,52	Kohlensäure	$H_2CO_3 / H_2O + CO_2$	HCO ₃	Hydrogencarbonat-Ion	7,48			
6,92	Schwefelwasserstoff Säure	H_2S	HS ⁻	Hydrogensulfid-Ion	7,08			
7,00	Hydrogensulfit-Ion	HSO ₃	SO_3^{2-}	Sulfit-Ion	7,00			
7,20	Dihydrogenphosphat-Ion	$H_2PO_4^-$	HPO ₄ ²⁻	Hydrogenphosphat-Ion	6,80			
9,25	Ammonium-Ion	NH ₄ ⁺	NH ₃	Ammoniak	4,75			
9,40	Blausäure (Cyanwasserstoff Säure)	HCN	CN ⁻	Cyanid-Ion	4,60			
9,60	Hexaqua-Zink(II)-Ion	$[Zn(H_2O)_6]^{2+}$	$\left[\operatorname{Zn}(\operatorname{OH})(\operatorname{H}_2\operatorname{O})_5\right]^+$	Pentaqua-hydroxo-Zink(II)-Ion	4,40			
10,40	Hydrogencarbonat-Ion	HCO ₃	CO ₃ ²⁻	Carbonat-Ion	3,60			
12,36	Hydrogenphosphat-Ion	HPO ₄ ²⁻	PO ₄ ³⁻	Phosphat-Ion	1,64			
13,00	Hydrogensulfid-Ion	HS ⁻	S ²⁻	Sulfid-Ion	1,00			
be	Wasser	H_2O	ОН	Hydroxid-Ion	e hm			
Keine Protonenabgabe	Ethanol	CH₃CH₂OH	CH₃CH₂O⁻	Ethanolat-Ion	Vollständige Protonenaufnahm			
Keine	Ammoniak	NH_3	NH ₂	Amid-Ion				
Fotor	Hydroxid-Ion	OH ⁻	O^{2-}	Oxid-Ion				
<u>4</u>	Wasserstoff	H_2	H ⁻	Hydrid-Ion	Prc			

pKs	Indikator	Farbe der Säure	pH-Bereich des Farbumschlags	Farbe der Base			
1,70	Thymolblau	rot	1,2 - 2,8	gelb			
3,40	Methylorange	rot	3,0 - 4,4	gelb-orange			
4,70	Bromkresolgrün	gelb	3,8 - 5,4	blau			
5,00	Methylrot	rot	4,2 - 6,2	gelb			
6,50	Lackmus	rot	5,0 - 8,0	blau			
7,10	Bromthymolblau	gelb	6,0 - 7,6	blau			
8,90	Thymolblau	gelb	8,0 - 9,6	blau			
9,40	Phenolphthalein	farblos	8,2 - 10,0	purpur			
10,00	Thymolphthalein	farblos	9,3 - 10,5	blau			
11,20	Alizaringelb R	gelb	10,1 - 12,1	rot			

Haupt	_
Traupi	

Das Periodensystem der Elemente

gruppen

	1 IA	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	18 VIIIA	
1	1,0 1 H																	4,0 2 He	1
2	6,9 3 Li	^{9,0} ₄ Be		Nebengruppen									10,8 5 B	12,0 6 C	14,0 7 N	16,0 8 O	19,0 9 F	^{20,2} ₁₀ Ne	2
3	23,0 11 N a	^{24,3} ₁₂ Mg	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	27,0 13 Al	^{28,1} 14 Si	31,0 15 P	32,1 16 S	35,5 17 Cl	39,9 18 Ar	3
4	39,1 19 K	^{40,1} ₂₀ Ca	^{45,0} 21 SC	^{47,9} 22 Ti	50,9 23 V	^{52,0} ₂₄ Cr	54,9 25 Mn	55,8 26 Fe	58,9 27 Co	58,7 28 Ni	63,5 29 Cu	65,4 30 Zn	^{69,7} 31 Ga	^{72,6} 32 Ge	^{74,9} ₃₃ As	^{79,0} ₃₄ Se	^{79,9} ₃₅ Br	83,8 36 Kr	4
5	85,5 37 Rb	87,6 38 Sr	88,9 39 Y	91,2 40 Zr	92,9 41 Nb	95,9 42 Mo	99 43 Tc	101,1 44 Ru	102,9 45 Rh	106,4 46 Pd	107,9 47 Ag	112,4 48 Cd	114,8 49 ln	118,7 50 Sn	121,8 51 Sb	127,6 52 Te	126,9 ₅₃	131,3 54 Xe	5
6	132,9 55 Cs	137,3 56 Ba	57 bis 71 La-Lu	178,5 72 Hf	180,9 73 Ta	183,8 74 W	186,2 75 Re	190,2 76 Os	192,2 77 r	195,1 78 Pt	197,0 79 Au	200,6 80 Hg	204,4 81 TI	^{207,2} ₈₂ Pb	209,0 83 Bi	209 84 Po	210 85 At	222 86 Rn	6
7	223 87 Fr	226 88 Ra	89 bis 103 Ac-Lr	261 104 Rf	262 105 Db	263 106 Sg	262 107 Bh	265 108 Hs	268 109 Mt	269 110 Uun	272 111 Uuu	277 112 Uub		289 114 Uuq		289 116 Uuh		293 118 Uuo	7
	Lanthanoide		oide	138,9 57 La	140,1 58 Ce	140,9 59 Pr	144,2 60 Nd	147 61 Pm	150,4 62 Sm	152,0 63 Eu	157,3 64 Gd	158,9 65 Tb	162,5 66 Dy	164,9 67 Ho	167,3 68 Er	168,9 69 Tm	173,0 70 Yb	175,0 71 Lu	
	Actinoide		de	227 89 Ac	232 90 Th	231 91 Pa	238 92 U	237 93 Np	244 94 Pu	243 95 Am	247 96 Cm	247 97 Bk	251 98 Cf	252 99 Es	257 100 Fm	258 101 Md	259 ₁₀₂ No	260 ₁₀₃ Lr	