EXAMEN DE FIN D'ÉTUDES SECONDAIRES – Sessions 2024 QUESTIONNAIRE										
Date :	Date : 24.05.24 Horaire : 08:15 - 10:45 Durée : 150 minutes									
Disci p line :	СНІМІ	Туре :	écrit	Section(s):		GA3D				
	•	•		•	Numéro du can	didat :				

1. Massenwirkungsgesetz (16 P)

1.1. Betrachten Sie folgende Reaktion: (2 + 3 = 5P)

$$HCOOH_{(l)} + CH_3OH_{(l)} \rightarrow HCOOCH_{3(l)} + H_2O_{(l)}$$

Dabei gelten folgende Konzentrationen, Methansäure (c = 2,8 M), Methanol (c = 4,6 M), Methansäuremethylester (c= 6,8 M) und Wasser (c = 6,8M). Es gilt $\Delta H < 0$.

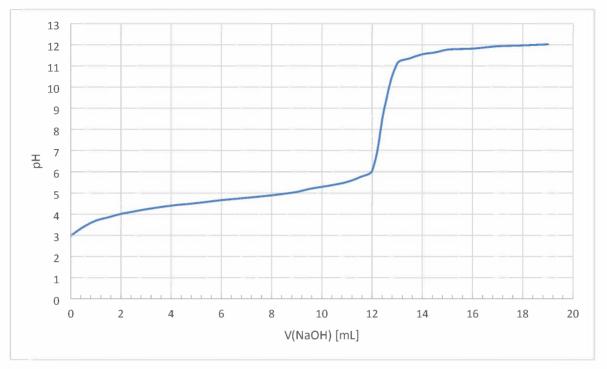
- 1.1.1. Bestimmen Sie, ob die Reaktion sich im Gleichgewicht befindet. Geben Sie alle Rechnungen an. Die Gleichgewichtskonstante beträgt $K_c=3,9$.
- 1.1.2. Geben Sie zwei Möglichkeiten an, um die Ausbeute an Methansäuremethylester zu erhöhen. Begründen Sie ihre Antwort.
- 1.2. Die Synthese von Iodwasserstoff hat eine Gleichgewichtskonstante von $K_c=45,5\frac{mol}{L}$. (5 + 1 + 1 = 7P)

$$H_{2(g)} + I_{2(g)} \rightleftarrows 2HI_{(g)}$$

- 1.2.1. Berechnen Sie die Gleichgewichtskonzentrationen, wenn $c_0(HI)=2.3\frac{mol}{L}$.
- 1.2.2. Geben Sie an wie sich das Gleichgewicht verschiebt, wenn der Druck erhöht wird.
 Begründen Sie ihre Antwort.
- 1.2.3. Geben Sie an, wie sich die Gleichgewichtskonstante verändert, wenn der Druck verringert wird. Begründen Sie ihre Antwort.

1.3. Exo- oder endotherm (4P)

Nickel kann über eine Reaktion mit Kohlenstoffmonoxid aus Nickel(II)-oxid gewonnen werden:


$$NiO_{(s)} + CO_{(g)} \rightleftarrows Ni_{(s)} + CO_{2(g)}$$

Die Gleichgewichtskonstante dieser Reaktion beträgt bei 663°C $K_c=4,54\cdot 10^3$ und bei 852°C $K_c=1,58\cdot 10^3$. Geben Sie an ob die Reaktion exo- oder endotherm ist, und begründen Sie ihre Antwort.

2. Säuren und Basen (22P)

- 2.1. Eine unbekannte Säure der Konzentration $c_0=0.2\frac{mol}{L}$ weist einen pH-Wert von 5,05 auf. (2 + 4 = 6P)
 - 2.1.1. Bestimmen Sie, ob es sich um eine starke oder eine schwache Säure handelt. Geben sie alle Überlegungen an.
 - 2.1.2. Identifizieren Sie die Säure in dem Sie ihren pK_s -Wert berechnen. Geben Sie alle Rechnungen und alle Näherungen an.
- 2.2. In 2L einer Lösung befinden sich Natriumhydrogenphosphat (m=5.30g) und Natriumphosphat ($m=4.80\ g$). (2 + 2 + 4 = 8P)
 - 2.2.1. Berechnen Sie den pH-Wert der Lösung. Geben Sie alle Rechnungen an.
 - 2.2.2. Die Lösung wird mit 5L destilliertem Wasser verdünnt. Bestimmen Sie den pH-Wert der neuen Lösung. Begründen Sie ihre Antwort.
 - 2.2.3. Es werden 0,5 g Natriumhydroxid zu der ersten Lösung hinzugegeben. Bestimmen Sie den pH-Wert nach der Zugabe.

- 2.3.1. Bestimmen Sie, graphisch, den Äquivalenzpunkt und den Halbäquivalenzpunkt.
- 2.3.2. Identifizieren Sie die unbekannte Säure. Erklären Sie ihre Überlegungen.
- 2.3.3. Berechnen Sie die Anfangskonzentration der Säure.
- 2.3.4. Welcher Indikator eignet sich für diese Titration? Begründen Sie ihre Antwort.

3. Elektrochemie (22P)

3.1. Die galvanische Zelle (4 + 4 = 8P)

- 3.1.1. Zeichnen Sie ein beschriftetes Schema des Daniell-Elements.
- 3.1.2. Damit die Schnecken den Salat im Garten nicht fressen, kann eine Abgrenzung aus einem Zink- und einem Kupferblech, welche in direktem Kontakt stehen, benutzt werden. Erklären Sie wie diese Konstruktion funktioniert und was mit der Schnecke passiert, wenn sie über beide Bleche gleichzeitig kriecht.

3.2. Korrosionsschutz (4 + 4 = 8P)

- 3.2.1. Erklären Sie, weshalb Eisen im Gegensatz zu Aluminium einen Korrosionsschutz benötigt.
- 3.2.2. Schiffe werden aus Stahl, welcher zu einem Großteil aus Eisen besteht, gebaut. Geben Sie eine Möglichkeit an, diesen Stahl vor dem Rosten zu schützen.

3.3. Reaktionen vorhersagen (2+2+2= 6P)

- 3.3.1. Geben Sie an, ob folgende Reaktionen freiwillig ablaufen und begründen Sie ihre Antwort. Formulieren Sie für die Reaktionen, die freiwillig ablaufen, alle Teilgleichungen und die Gesamtgleichung an.
 - 3.3.1.1. Es wird eine Bleikugel in eine Natriumchlorid-Lösung gegeben.
 - 3.3.1.2. Bromgas wird in eine Gold(III)-iodid-Lösung eingeleitet.
 - 3.3.1.3. Ein Stück Calciumiodid wird in eine Schüssel mit Quecksilber gegeben.

	Ox + ze	Standardpotential Eo (in Volt)
2 F	F ₂ + 2 e	+ 2,87
2 50 ₄ ²	5 ₂ O ₈ ² + 2 e	+ 2,00
4 H₂O	H ₂ O ₂ + 2 H ₃ O+ + 2 e-	+ 1,78
	PbO2 + HSO4 + 3 H30 + 2 e	+ 1,69
$MnO_2 + 6 H_2C$	MnO4" + 4 H3O" + 3 e"	+ 1,68
Mn²+ + 12 H₂O	MnO ₄ + 8 H ₃ O + 5 e	+ 1,49
Pb ²⁺ + 6 H₂C	PbO2 + 4 H30 + 2 e	+ 1,46
Au	Au ³⁺ + 3 e	+ 1,42
	Cl ₂ + 2 e	+ 1,36
2 Cr ³⁺ + 21 H ₂ C	Cr ₂ O ₇ ² + 14 H ₃ O* + 6 e	+ 1,33
6 H₂C	O2 + 4 H3O+ + 4 e	+ 1,23
Mn²+ 6 H₂O	MnO2 + 4 H30" + 2 e	+ 1,21
Pt	Pt2+ + 2 e-	+ 1,20
I ₂ + 18 H ₂ C	2 IO3 + 12 H3O + 10 e	+ 1,20
	Br2 + 2 e	+ 1,07
	NO3 + 4 H3O + 3 e	+ 0,96
	Hg ²⁺ + 2 e	+ 0,85
	Ag* + e	+ 0,80
	Hg22+ + 2 e	+ 0,80
	Fe3+ + e	+ 0,77
H ₂ O ₂ + 2 H ₂ O	O2 + 2 H3O+ + 2 e	+ 0,68
	MnO4 + 2 H2O + 3 e	+ 0,59
	I ₂ + 2e	+ 0,54
	Cu* + e	+ 0,52
	O2 + 2 H2O + 4 e	+ 0,40
	Ag20 + H20 + 2 e	+ 0,34
	Cu2+ + 2 e	+ 0,34
	Hg ₂ Cl ₂ + 2 e	+ 0,27
	AgCl + e	+ 0,22
	SO42- + 4 H30+ 2 e	+ 0,20
	Cu2+ + e	+ 0,16
	5 + 2 H ₃ 0+ + 2 e	+ 0,14
	AgBr + e	+ 0,07
	2 H ₃ O* + 2 e*	0
	Fe ³⁺ + 3 e ⁻	-0,04
	Pb ²⁺ + 2 e ⁻	-0,13
	5n2 + 2e	-0,14
	O2 + 2 H2O + 2e	-0,15
	AgI + e	-0,15
	Ni ²⁺ + 2 e ⁻	-0,23
	Pb5O ₄ + 2 e	-0,36
	Cd ²⁺ + 2 e ⁻	-0,40
	Fe ²⁺ + 2 e	-0,41
	Zn ²⁺ + 2 e ⁻	-0,76
	2 H ₂ O + 2 e	-0,83
	50 ₄ ² + H ₂ O + 2 e	-0,92
	N ₂ + 4 H ₂ O + 4 e	-1,16
	Al3+ + 3 e	-1,66
	Mg ² * + 2 e	-2,38
	Na° + e°	-2,71
	$Ca^{2+} + 2e^{-}$	-2,76
	Ba ²⁺ + 2 e ⁻	-2,90
	K* + e	-2,92
ν .	+ 0	_/ _/

Haupt -	Das Periodensystem der Elemente
, aupt	

gruppen

1 IA	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	18 VIIIA	
1,0 1 H																	4,0 2 He	1
6,9 3 Li	^{9,0} ₄ Be					Nebeng	grupper	7				10,8 5 B	12,0 6 C	14,0 7 N	16,0 8 O	19,0 9 F	^{20,2} ₁₀ Ne	2
23,0 11 Na	24,3 12 Mg	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	27,0 13 Al	28,1 14 Si	31,0 15 P	32,1 16 S	35,5 17 CI	39,9 18 Ar	3
39,1 19 K	^{40,1} ₂₀ Ca	45,0 21 Sc	47,9 22 Ti	50,9 23 V	52,0 24 Cr	54,9 25 Mn	55,8 26 Fe	58,9 27 Co	58,7 28 N i	63,5 29 Cu	65,4 30 Zn	^{69,7} 31 Ga	72,6 32 Ge	74,9 33 As	^{79,0} ₃₄ Se	^{79,9} ₃₅ Br	83,8 36 Kr	4
85,5 37 Rb	87,6 38 Sr	88,9 39 Y	91,2 40 Zr	92,9 41 Nb	95,9 42 Mo	99 43 Tc	101,1 44 Ru	102,9 45 Rh	106,4 46 Pd	107,9 47 Ag	112,4 48 Cd	114,8 49 ln	118,7 50 Sn	121,8 51 Sb	127,6 52 Te	126,9 53	131,3 54 Xe	5
132,9 55 Cs	137,3 56 Ba	57 bis 71 La-Lu	178,5 72 Hf	180,9 73 Ta	183,8 74 W	186,2 75 Re	190,2 76 Os	192,2 77 lr	195,1 78 Pt	197,0 79 Au	200,6 80 Hg	204,4 81 TI	^{207,2} 82 Pb	209,0 83 Bi	209 84 Po	210 85 At	222 86 Rn	6
223 87 Fr	226 88 Ra	89 bis 103 Ac-Lr	261 104 Rf	²⁶² ₁₀₅ Db	²⁶³ ₁₀₆ Sg	²⁶² ₁₀₇ Bh	265 108 Hs	²⁶⁸ ₁₀₉ Mt	269 110 Uun	272 111 Uuu	277 112 Uub		289 114 Uuq		289 116 Uuh		293 118 Uuo	7
				1														
Lan	nthand	oide	138,9 57 La	140,1 58 Ce	140,9 59 Pr	144,2 60 Nd	147 61 Pm	150,4 62 Sm	152,0 63 Eu	157,3 64 Gd	158,9 65 Tb	162,5 66 Dy	164,9 67 Ho	167,3 68 Er	168,9 69 Tm	173,0 70 Yb	175,0 71 Lu	
A	ctinoid	de	227 89 Ac	232 90 Th	231 91 Pa	238 92 U	237 93 Np	244 94 Pu	243 95 Am	247 96 Cm	247 97 Bk	251 98 Cf	252 99 Es	257 100 Fm	258 101 Md	259 102 N O	260 103 Lr	

pK_S	Säure		Korrespondierende Base			
	Perchlorsäure	HClO ₄	ClO ₄	Perchlorat-Ion		
Vollständige Protonenabgabe	Iodwasserstoffsäure	НІ	ľ	Iodid-Ion	me	
	Bromwasserstoffsäure	HBr	Br ⁻	Bromid-Ion	hah	
	Salzsäure	HCI	Cl	Chlorid-Ion	Keine Protonenaufnahme	
	Schwefelsäure	H ₂ SO ₄	HSO ₄	Hydrogensulfat-Ion		
Pro	Oxonium-Ion	H_3O^+	H ₂ O	Wasser	Prot	
	Salpetersäure	HNO ₃	NO ₃	Nitrat-Ion	1 -	
1,92	Hydrogensulfat-Ion	HSO ₄	SO ₄ ²⁻	Sulfat-Ion	12,08	
2,13	Phosphorsäure	H ₃ PO ₄	H ₂ PO ₄	Dihydrogenphosphat-lon	11,87	
2,22	Hexaqua-Eisen(III)-Ion	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Eisen(III)-Ion	11,78	
3,14	Flusssäure (Fluorwasserstoffsäure)	HF	F	Fluorid-Ion	10,86	
3,35	Salpetrige Säure	HNO ₂	NO ₂ ·	Nitrit-Ion	10,65	
3,75	Ameisensäure (Methansäure)	нсоон	HCOO.	Formiat-Ion (Methanoat-Ion)	10,25	
4,75	Essigsäure (Ethansäure)	СН₃СООН	CH ₃ COO	Acetat-Ion (Ethanoat-Ion)	9,25	
4,85	Hexaqua-Aluminium-lon	[Al(H ₂ O) ₆] ³⁺	[Al(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Aluminium-Ion	9,15	
6,52	Kohlensäure	$H_2CO_3 / H_2O + CO_2$	HCO ₃	Hydrogencarbonat-Ion	7,48	
6,92	Schwefelwasserstoff Säure	H ₂ S	HS ⁻	Hydrogensulfid-lon	7,08	
7,00	Hydrogensulfit-Ion	HSO ₃	SO ₃ ²⁻	Sulfit-Ion	7,00	
7,20	Dihydrogenphosphat-Ion	H ₂ PO ₄	HPO ₄ ²⁻	Hydrogenphosphat-Ion	6,80	
9,25	Ammonium-Ion	NH ₄ ⁺	NH ₃	Ammoniak	4,75	
9,40	Blausäure (Cyanwasserstoff Säure)	HCN	CN	Cyanid-Ion	4,60	
9,60	Hexaqua-Zink(II)-Ion	$[Zn(H_2O)_6]^{2+}$	$\left[\operatorname{Zn}(\operatorname{OH})(\operatorname{H}_2\operatorname{O})_5\right]^+$	Pentaqua-hydroxo-Zink(II)-lon	4,40	
10,40	Hydrogencarbonat-Ion	HCO ₃	CO ₃ ²⁻	Carbonat-Ion	3,60	
12,36	Hydrogenphosphat-Ion	HPO ₄ 2-	PO ₄ 3-	Phosphat-Ion	1,64	
13,00	Hydrogensulfid-Ion	HS ⁻	S ²⁻	Sulfid-Ion	1,00	
эс	Wasser	H ₂ O	OH.	Hydroxid-lon	, mc	
Keine Protonenabgabe	Ethanol	CH₃CH₂OH	CH ₃ CH ₂ O ⁻	Ethanolat-Ion	Vollständige Protonenaufnahm	
Keine	Ammoniak	NH ₃	NH ₂	Amid-Ion	stän	
K	Hydroxid-lon	OH.	O ²⁻	Oxid-Ion	Voll	
Pro	Wasserstoff	H_2	H.	Hydrid-Ion	Pro	

pK _S	Indikator	Farbe der Säure	pH-Bereich des Farbumschlags	Farbe der Base
1,70	Thymolblau	rot	1,2 - 2,8	gelb
3,40	Methylorange	rot	3,0 - 4,4	gelb-orange
4,70	Bromkresolgrün	gelb	3,8 - 5,4	blau
5,00	Methylrot	rot	4,2 - 6,2	gelb
6,50	Lackmus	rot	5,0 - 8,0	blau
7,10	Bromthymolblau	gelb	6,0 - 7,6	blau
8,90	Thymolblau	gelb	8,0 - 9,6	blau
9,40	Phenolphthalein	farblos	8,2 - 10,0	purpur
10,00	Thymolphthalein	farblos	9,3 - 10,5	blau
11,20	Alizaringelb R	gelb	10,1 - 12,1	rot