EXAMEN DE FIN D'ÉTUDES SECONDAIRES – Sessions 2024 QUESTIONNAIRE Date : 20.09.24 Horaire : 08:15 - 10:15 Durée : 120 minutes Discipline : CHIME Type : écrit Section(s) : GSH Numéro du candidat :

Bei Berechnungen ist der ausführliche Rechenweg (erst Formeln, dann umstellen und dann erst Zahlenwerte samt Einheiten einsetzen) anzugeben.

Die Ergebnisse sind mit 3 signifikanten Stellen anzugeben.

SÄURE UND BASEN

25 Punkte

- 1) In ein Becherglas geben sie 200 ml Essigsäure einer Konzentration von 0,45 mol/L und 300 ml Natronlauge einer Konzentration von 0,20 mol/L. Bestimmen Sie die c(CH₃COOH), c(CH₃COO-) und c(OH-) im Becherglas.
- 2) Sie möchten eine Lösung mit einem pH-Wert von 9,5 herstellen. 10P
 - **a.** Berechnen Sie die Masse an Kaliumhydroxid, die Sie in 500 ml Wasser lösen müssen.
 - b. Berechnen Sie die Masse an Ammoniumchlorid NH₄Cl die sie zu 500 ml einer 0,3 M
 Ammoniak-Lösung (NH₃) hinzugeben müssen.
- **3)** Titration von Salzsäure mit Natronlauge 0,12M. Es wurden 25 ml Probe in das Becherglas vorgelegt. Nach Zugabe von 32,4 ml wurde der Äquivalenzpunkt mittels Indikators bestimmt.

7P

- a. Bestimmen Sie die Konzentration der Probe. (1)
- **b.** Berechnen Sie den pH der Probe vor der Titration. (1)
- c. Bestimmen Sie den pH an Äquivalenzpunkt. Begründen Sie ihre Antwort. (2)
- **d.** Was ist ein Indikator? Begründen Sie, welchen sie für die vorliegenden Reaktion verwenden wurden. (3)

ORBITALMODELL

13 Punkte

4) Zeichnen Sie das Molekülorbital von Stickstoff.

4P

5) Ammoniak NH₃

6P

- a. Stellen sie ein Energiediagramm dar, welches den Grundzustand, den angeregten und den hybridisierten Zustand von Stickstoff im Ammoniak darstellt. (3)
- **b.** Stellen Sie Ammoniak anhand des Orbitalmodells dar. Beschriften Sie die Orbitale, die Bindungen und zeichnen Sie die Elektronen ein. (3)
- 6) Formulieren Sie die

3P

- a. die einfachen Elektronenkonfiguration von Germanium Ge²⁺ (1,5)
- **b.** die vereinfachte Elektronenkonfiguration von Bismut **Bi**

(1,5)

ORGANISCHE CHEMIE

22 Punkte

7) Vom Molekül C₃H₆O existieren 6 Isomere.

15P

Identifizieren Sie die Isomere, welche folgende Bedingungen erfüllen. Geben Sie die Halbstrukturformel **und** den Namen der Moleküle in **a., c., d**..

a. Bildet einen roten Niederschlag mit dem Fehling-Reagenz.

(1)

- **b.** Formulieren Sie die Redoxgleichung für diesen positiven Nachweis in alkalischer Lösung. (5)
- c. Existiert als Diastereoisomere. Geben Sie beide an.

(3)

- **d.** Stellt kein Diastereoisomer dar und bildet einen roten Farbstoff mit Cer(IV)-ammoniumnitrat. (1)
- e. Welche Reaktion erfolgt, wenn man zum Molekül aus Punkt d eine saure Kaliumpermanganat Lösung gibt. Geben Sie die Gesamtgleichung und die Teilgleichungen mittels Halbstrukturformeln an. (5)
- 8) Zwei Flaschen enthalten jeweils Pentan oder Pent-1-en.

7P

- a. Beschreiben Sie eine Nachweisreaktion, die es erlaubt die beiden Stoffe zu unterscheiden. (2)
- **b.** Formulieren Sie mittels Halbstrukturformeln den Reaktionsmechanismus für die Reaktion von Pent-1-en mit dem Nachweisreagenz. Erläutern Sie den Reaktionsablauf. Begründen Sie um welche Art Reaktion es sich handelt. (5)

Anhang 1: pK Tabelle:

pKs	Säure		Korrespondierende Base		рКв
- 10,0	Perchlorsäure	HClO₄	CIO ₄ -	Perchlorat-Ion	24,0
-10,0	lodwasserstoffsäure	HI	-	lodid-lon	24,0
- 8,9	Bromwasserstoffsäure	HBr	Br -	Bromid-Ion	22,9
-6,0	Salzsäure	HCI	CI -	Chlorid-Ion	20,0
-3,0	Schwefelsäure	H₂SO₄	HSO₄⁻	Hydrogensulfat-Ion	17
-1,74	Oxonium-Ion	H ₃ O⁺	H ₂ O	Wasser	15,74
-1,32	Salpetersäure	HNO₃	NO ₃ -	Nitrat-Ion	12,08
1,88	Schwefelige Säure	H₂SO₃	HSO ₃ -	Hydrogensulfit-Ion	12,12
1,92	Hydrogensulfat-Ion	HSO ₄ -	SO ₄ ²⁻	Sulfat-Ion	12,08
2,13	Phosphorsäure	H₃PO₄	H ₂ PO ₄ -	Dihydrogenphosphat-Ion	11,87
3,14	Flusssäure (Fluorwasserstoffsäure)	HF	F-	Fluorid-Ion	10,86
3,35	Salpetrige Säure	HNO ₂	NO ₂ -	Nitrit-Ion	10,65
3,75	Ameisensäure (Methansäure)	нсоон	HCOO-	Formiat-Ion (Methanoat-Ion)	10,25
4,75	Essigsäure (Ethansäure)	CH₃COOH	CH₃COO-	Acetat-Ion (Ethanoat-Ion)	9.25
6.52	Kohlensäure	H ₂ CO ₃ / H ₂ O + CO ₂	HCO ₃ -	Hydrogencarbonat-Ion	7,48
6,92	Schwefelwasserstoff Säure	H₂S	HS-	Hydrogensulfid-Ion	7,08
7,00	Hydrogensulfit-Ion	HSO₃ -	SO ₃ ²⁻	Sulfit-Ion	7,00
7,20	Dihydrogenphosphat-Ion	H ₂ PO ₄ -	HPO ₄ ²⁻	Hydrogenphosphat-Ion	6,80
9,25	Ammonium-Ion	NH ₄ ⁺	NH ₃	Ammoniak	4.75
9,40	Blausäure (Cyanwasserstoff Säure)	HCN	CN-	Cyanid-Ion	4,60
10,40	Hydrogencarbonat-Ion	HCO ₃ -	CO ₃ ^{2–}	Carbonat-Ion	3,60
12,36	Hydrogenphosphat-Ion	HPO ₄ ²⁻	PO ₄ ^{3–}	Phosphat-Ion	1,64
13,00	Hydrogensulfid-Ion	HS-	S ²⁻	Sulfid-Ion	1,00
15,74	Wasser	H ₂ O	OH -	Hydroxid-Ion	-1,74
15,8	Methanol	CH₃OH	CH ₃ O -	Methanolat-Ion	-1,8
15,9	Ethanol	CH₃CH₂OH	CH₃CH₂O -	Ethanolat-Ion	- 1,9
24	Hydroxid-Ion	OH -	O ²⁻	Oxid-Ion	- 10

Anhang 2: Indikatoren:

Indikator	Farbe der Säure	pK _S	Farbe der Base
Thymolblau	rot	1,7	gelb
Methylorange	rot	3,8	gelb-orange
Bromkresolgrün	gelb	4,7	blau
Methylrot	rot	5,1	gelb
Lackmus	rot	6,5	blau
Bromthymolblau	gelb	7,0	blau
Phenolphthalein	farblos	9,4	purpur
Alizaringelb R	gelb	11,1	rot

Anhang 3: PSE

Elemente

Periodensystem der

2He 86Rn 4,002602 83,8 79,904 35**B**L 174,967 8 102NO 16 69 Tm 101**M**d 51**Sb** 33AS 168,9342 121,76 74,9216 2 83**B** Z 100Fm 32**Ge** Son 82Pb 167,26 [289] 114**F** 4 S 31**Ga** 164,9303 9H0 113Nh 69,723 13A 49 N 13 2.0 6H[®] 112Ch 66Dy 30Zn 162,5 38 58 58 [277] 12 158,9253 97**BK** <u>Q</u> ⁹⁶Cm 64**G**d 46Pd 157,25 58,6934 28 N 9 %Am 45Rh 83Eu 109Mt 58,9332 0 62Sm 108 HS Nebengruppen 4Ru 150,36 ₽ Pu 61Pm 107**Bh** 54,93805 43 TC 42**Mo** DN₀₉ 144,24 74W 1,00794 1**H** 41Nb dOso 140,9077 **P**F STP S EN nach Pauling 72**Hf** 104Rf [261] Lanthanoide 57 La [227] 4Be 56Ba 40.078 2 Haupt-INa SOSS ,00794 39,0983 87Fr [223] Ø Î 0 $\overline{\mathbf{x}}$ N 🗐 က ် ဖြ က