EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date:	19.09.23		Durée :	08:15 - 10:15		Numéro candidat :	
Disciplin	e:	Mathématiqu Mathématiques-A		Section(s):		GSO	

Sauf indications contraires, pour l'ensemble du questionnaire, arrondis tes résultats à trois chiffres significatifs.

Question 1
$$(4 + 1 + 2 + 2 = 9 \text{ points})$$

Résous les équations et inéquations suivantes, sur le domaine indiqué :

1)
$$\ln(x+3) + \ln(x-5) = \ln(3x+21)$$

$$D =]5; + \infty[$$

2)
$$e^{-x+3} = -2$$

$$D=\mathbb{R}$$

3)
$$ln(5x-2) \ge 0$$

$$D = \mathbb{R}$$

$$D = \left[\frac{2}{5}; +\infty\right[$$

Simplifie en utilisant les propriétés des exponentielles et des logarithmes ; détaille tes calculs.

4)
$$e^{4 \ln 5 - 3 \ln 2}$$

Question 2
$$(1+1+3+1+2=8 \text{ points})$$

Au marché des artisans de son village, un illustrateur décide de vendre des cartes postales illustrées par ses soins. Son bénéfice, en euros, pour la production et la vente de x dizaines de cartes est modélisé par la fonction

$$f(x) = 300 \cdot \ln(x-1) - 50 \cdot x$$
 avec $x \in [1,5;10]$.

Arrondis le nombre de cartes à l'unité et le bénéfice au centime près.

- 1) Calcule le bénéfice généré par la vente de 50 cartes.
- 2) Détermine f(2) et interprète dans le contexte.
- 3) Dresse le tableau de variations de f.
- 4) Pour combien de cartes produites et vendues le bénéfice est-il maximal? À combien s'élève alors ce bénéfice?
- 5) A partir de combien de cartes produites et vendues le bénéfice dépasse-t-il 100€?

Question 3 (1+1+2+1+1+2+2=10 points)

Le tableau ci-dessous donne l'évolution, depuis 1985 jusqu'à 2020, en France, de la superficie (en milliers d'hectares) des sols artificiels (routes, parkings, supermarchés, habitations, écoles, ...).

Année	1985	1990	1995	2000	2005	2010	2015	2020
Rang de l'année (x_i)	0	5	10	15	20	25	30	35
Superficie des sols								
artificiels	3 059	3 297	3 609	3 880	4 147	4 468	4 758	4 978
(en milliers d' ha) (y_i)								

Source : Agreste - Enquête TERUTI

Partie 1

On admet qu'un ajustement affine est valable.

- 1) Détermine une équation de la droite de régression de y en x. Écris les coefficients en les arrondissant à l'unité.
- 2) Détermine, suivant ce modèle, la superficie des sols artificiels en 2050, en ha. Arrondis au millier d'hectares.
- 3) La France a une superficie de 55 170 milliers d'hectares. Suivant ce modèle, à partir de quelle année au moins 10% de sa superficie sera recouverte de sols artificiels ?

Partie 2

Certains experts en analyse territoriale pensent que l'ajustement affine minimise l'expansion des sols artificiels dans les décennies à venir. Ils envisagent alors de modéliser la situation par un ajustement exponentiel.

4) Complète le tableau suivant :

x_i	0	5	10	15	20	25	30	35
y_i	3 059	3 297	3 609	3 880	4 147	4 468	4 758	4 978
$z_i = \ln y_i$								

- 5) Détermine une équation de la droite de régression de z en x.
- 6) Déduis-en un ajustement de y en x sous la forme $y = k \cdot e^{ax}$. Écris les coefficients k et a arrondis à 10^{-2} .
- 7) Calcule le pourcentage d'augmentation de la superficie des sols artificiels entre l'année 2030 et l'année 2050, suivant ce modèle.

Question 4 (2 + 2 + 2 + 1 + 2 + 2 + 3 + 2 = 16 points)

Pour se rendre à l'école, Anne prend son vélo deux fois sur trois, sinon elle prend le bus.

Quand elle prend le vélo, Anne n'arrive en retard qu'une fois sur cinquante ; quand elle prend le bus, elle arrive en retard une fois sur dix.

On considère une journée au hasard lors de laquelle Anne va à l'école.

On note:

V : « Anne a pris le vélo pour aller à l'école ».

R: « Anne est arrivée en retard ».

- 1) Fais un arbre pondéré qui illustre la situation.
- 2) Calcule la probabilité qu'Anne soit arrivée en retard à l'école ce jour.
- 3) Calcule la probabilité qu'Anne ait pris son vélo pour aller à l'école sachant qu'elle est arrivée en retard.

Au cours du premier semestre, Anne s'est rendue 80 fois à l'école. On suppose que, pour ces 80 jours, le choix entre le vélo et le bus est indépendant des choix des autres jours. On note X la variable qui donne le nombre de jours où Anne a pris son vélo pour aller à l'école. X suit une loi binomiale de paramètres n et p.

- 4) Donne les paramètres n et p de X.
- 5) Calcule $P(X \le 20)$ et interprète dans le contexte.
- 6) Calcule E(X) et interprète dans le contexte.

Georges, lui, annonce avoir pris son vélo ce premier semestre 90% du temps.

On note Y la variable aléatoire qui compte le nombre de jours où Georges a pris son vélo sur le premier semestre.

- 7) Détermine un intervalle de fluctuation de la variable *Y*, au seuil de 95%.
- 8) Si Georges a pris son vélo 75 fois sur ce premier semestre, doit-on accepter son affirmation?

Question 5 (1+1+2=4 points)

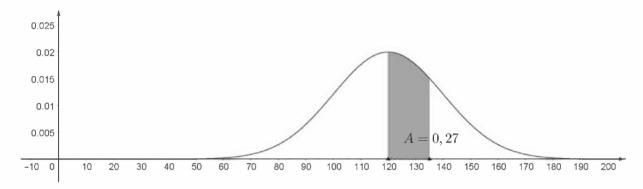
Soit X la variable aléatoire qui donne le temps de trajet d'Anne pour se rendre à l'école à vélo. Elle suit une loi normale d'espérance $\mu=17$ minutes et d'écart-type $\sigma=4$ minutes.

- 1) Aujourd'hui, Anne est venue en vélo. Calcule la probabilité que son trajet ait duré plus de 20 minutes.
- 2) Détermine a tel que $P(X \le a) = 0.95$.
- 3) Pour être à l'heure en classe, il faut qu'elle arrive à l'école à 7h55. A quelle heure Anne doit-elle quitter la maison au plus tard pour être à l'heure avec une probabilité de 95% ?

Question 6
$$(1 + 1 + 1 + 3 = 6 \text{ points})$$

Le graphique ci-dessous représente la distribution d'une loi normale d'espérance $\mu=120$ et d'écart-type σ , inconnu.

On sait que P(120 < X < 135) = 0.27.



Détermine les probabilités suivantes à l'aide du graphique :

- 1) P(X > 135)
- 2) P(105 < X < 135)
- 3) P(X < 105)

On définit
$$Y = \frac{X - 120}{\sigma}$$

4) A l'aide de Y, détermine la valeur de l'écart-type σ de X.

Question 7 (1+1+1+1+1+2=7 points)

Une commune veut réviser son plan d'aides sociales. Elle a mené une étude sur un échantillon représentatif de 616 personnes qui bénéficient déjà d'aides sociales. Elle les a réparties suivant leur catégorie d'âge et leur niveau de privation matérielle et sociale (PMS).

Les résultats sont repris dans le tableau ci-dessous :

	PMS légère (L)	PMS moyenne (M)	PMS sévère (S)	Total
18-24 ans (A)	20	22	21	63
25-49 ans (B)	7	21	56	84
50-64 ans (<i>C</i>)	98	147	161	406
65 ans et + (D)	18	22	23	63
Total	147	210	259	616

On choisit au hasard une personne parmi les 616 de l'échantillon.

- 1) Détermine la probabilité que cette personne soit en état de privation matérielle et sociale sévère.
- 2) Détermine la probabilité que cette personne soit en état de privation matérielle et sociale sévère, si on sait qu'elle a entre 18 et 24 ans.

La commune veut étudier la dépendance entre la catégorie d'âge des personnes de l'échantillon et leur niveau de privation matérielle et sociale.

- 3) Énonce l'hypothèse H_0 .
- 4) Énonce l'hypothèse H_1 .
- 5) On va réaliser un test χ^2 au seuil de signification $\alpha=5\%$. Détermine la p-valeur.
- 6) Conclus dans le contexte.