EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES

Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date :	20	0.09.23	Durée :	08:15 - 11:15		Numéro candidat :	
Disciplin	ne :	Mathématiques - Mathématiques-Analyse		Section(s):		GSN	

Exercice 1
$$[3+8=11 \text{ points}]$$

Résoudre dans \mathbb{R} les (in)équations suivantes :

a.
$$6e^x = 14 - 4e^{-x}$$

b.
$$\ln\left(\frac{9-x^2}{-4x-3}\right) \le 0$$

Exercice 2
$$[1+2+2+4=9 \text{ points}]$$

On étudie la concentration g(t) d'un médicament dans le sang, exprimée en microgrammes par litre $\left(\frac{\mu g}{L}\right)$, au bout de t heures après avoir été pris.

Pour $t \in [0; +\infty[$, le problème est modélisé par

$$g(t) = 20(e^{-0.1t} - e^{-t})$$

- **a.** Déterminer la concentration initiale du médicament dans le sang, c'est-à-dire au moment de la prise du médicament.
- **b.** Calculer la limite de la fonction g en $+\infty$ et interpréter le résultat dans le contexte.
- **c.** Démontrer que, pour $t \in [0; +\infty[$,

$$g'(t) = 20e^{-t}(1 - 0.1e^{0.9t})$$

d. En déduire le tableau de variations complet de la fonction g sur $[0; +\infty[$. Donner la concentration maximale, arrondie au centième près. Préciser aussi la durée en heures et minutes à laquelle elle est atteinte.

Exercice 3 [2+2+2+3+1=10 points]

Soit \mathcal{C}_f la courbe représentative dans un repère orthonormé de la fonction f définie sur $\mathbb R$ par

$$f(x) = \frac{3}{1 + e^{-2x}}$$

- a. Déterminer les limites de la fonction f aux bornes de son domaine de définition et donner les équations des éventuelles asymptotes.
- **b.** Calculer f'(x) et en déduire les variations de f sur $\mathbb R$
- **c.** Déterminer l'équation de la tangente à C_f au point d'abscisse 0.
- **d.** Soit h la fonction définie sur $\mathbb R$ par

$$h(x) = 3 - f(x)$$

Soit H la fonction définie sur \mathbb{R} par

$$H(x) = -\frac{3}{2}\ln(1 + e^{-2x})$$

Calculer H' et en déduire que H est une primitive de h sur \mathbb{R} .

e. En déduire la valeur exacte de l'intégrale

$$\int_{-\frac{1}{2}}^{0} h(x) \, dx$$

Exercice 4 [3+3+2+2=10 points]

Vrai ou faux ? Justifier les réponses.

- **a.** Soit la fonction f définie sur \mathbb{R} par $f(x) = 8 + 4x + 2e^x$. De plus, on sait que f est dérivable sur \mathbb{R} . Alors f ne s'annule qu'une seule fois sur \mathbb{R} .
- **b.** Soit C_g la courbe représentative dans un repère orthonormé de la fonction g définie sur \mathbb{R}_+^* par $g(x) = 12x + \frac{2}{x} + 5\ln(x)$.

Alors C_g admet exactement une tangente horizontale.

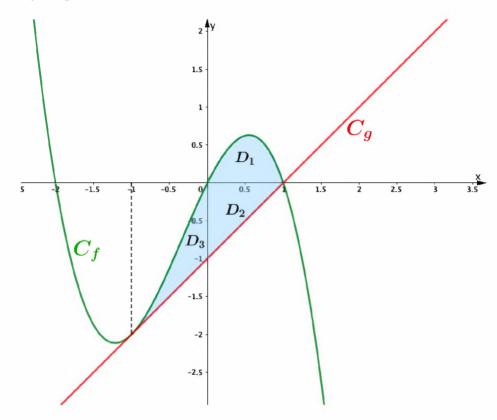
- **c.** Pour tout $n \in \mathbb{N}$, la suite (u_n) définie par $u_n = \frac{-e}{e^{n-4}}$ est une suite géométrique.
- **d.** $\lim_{r \to +\infty} \frac{\ln(e^{-x}+1)}{-e^{-x}} = -1$

Exercice 5
$$[2+2+(1+1+1)+1=8 \text{ points}]$$

Soient f et g deux fonctions définies sur $\mathbb R$ par :

$$f(x) = -x^3 - x^2 + 2x$$
 et $g(x) = x - 1$

On désigne par \mathcal{C}_f et \mathcal{C}_g les courbes respectives de f et g dans un repère orthonormé.



- a. Calculer la valeur exacte de l'aire du domaine D_1 délimité par la courbe C_f , l'axe des abscisses et les deux droites d'équations x=0 et x=1.
- **b.** Calculer la valeur exacte de l'aire du domaine D_2 délimité par la courbe C_g , l'axe des abscisses et les deux droites d'équations x=0 et x=1.

c.

- i. Calculer la valeur exacte de l'aire du domaine délimité par la courbe C_f , l'axe des abscisses et les deux droites d'équations x=-1 et x=0.
- ii. Calculer la valeur exacte de l'aire du domaine délimité par la courbe C_g , l'axe des abscisses et les deux droites d'équations x=-1 et x=0.
- iii. Sachant que les courbes C_f et C_g se coupent au point d'abscisse -1, en déduire la valeur exacte de l'aire du domaine D_3 .
- d. En déduire la valeur exacte de l'aire du domaine colorié.

Exercice 6
$$[1+1+1+1+1=5 \text{ points}]$$

Lors de la cueillette de pommes, on constate que chaque pomme a une masse qui varie entre 150 et 250 grammes. Cette masse est une variable aléatoire X qui suit une loi uniforme sur l'intervalle [150; 250].

- **a.** Déterminer la fonction densité f de la variable aléatoire X.
- **b.** Calculer la probabilité que la masse soit exactement 200 grammes.
- c. Calculer la probabilité que la masse soit comprise entre 180 et 210 grammes.
- d. Calculer la probabilité que la masse soit au moins 225 grammes.
- e. En moyenne, sur un grand nombres de pommes, quelle est la masse d'une pomme ?

Exercice 7 [1 + 2 + 2 + 2 = 7 points]

Un maraîcher distribue sa récolte de pastèques dans des magasins locaux.

Supposons que la masse X, exprimée en kg, d'une caisse de pastèques est distribuée suivant une loi normale d'espérance $\mu=15$ et d'écart-type $\sigma=2$.

- a. Quelle est la probabilité que la masse d'une caisse soit inférieure ou égale 20 kg?
- b. Quelle est la probabilité que la masse d'une caisse soit comprise entre 12 et 17 kg?
- c. Quelle est la probabilité que la masse d'une caisse soit au moins 16,5 kg?
- **d.** Déterminer la masse m, arrondie au millième près, d'une caisse pour que $P(X \le m) = 0.995$.

Fonction de répartition de la loi normale $\mathcal{N}(0,1)$

1	
1	$\Phi(x) = \int_{0}^{x} c_0(t) dt = \frac{1}{1} + \int_{0}^{x} c_0(t) dt$
	$\Phi(x) = \int_{-\infty}^{x} \varphi(t) dt = \frac{1}{2} + \int_{0}^{x} \varphi(t) dt$
$p = \Phi(x)$	où $\varphi(t) = \frac{1}{\sqrt{2}} e^{-\frac{1}{2}t^2}$
	\longrightarrow $\sqrt{2\pi}$
	t.

	0.00	0.01	0.00	0.00	0.04	0.05	0.00	0.0=	0.00	0.00
x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
					·					

x	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9
$\Phi(x)$	0,9987	0,9990	0,9993	0,9995	0,9997	0,9998	0,9998	0,9999	0,9999	1,000

Quelques valeurs de Φ^{-1} :

p	0,950	0 0,9750	0,9900	0,9950	0,9990	0,9995
$x = \Phi^{-1}$	(p) 1,644	9 1,9600	2,3263	2,5758	3,0902	3,2905