EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 — QUESTIONNAIRE ÉCRIT

Date :	19.09.23		Durée :	08:15 - 11:15		Numéro candidat :	
Discipline :				Section(s):			
	Mathématiques - Mathématiques-Analyse				GSE		

Dans toutes les questions, le plan est muni d'un repère orthonormé $(0; \vec{l}, \vec{j}, \vec{k})$.

Question 1 (3 + 3 + 2 = 8 points)

Démontrer les théorèmes suivants :

- a) Pour tout entier $n \ge 1$, $\lim_{x \to -\infty} x^n \cdot e^x = 0$.
- **b)** Pour tout réel a > 0 et pour tout entier relatif p, $\ln a^p = p \ln a$.
- c) $\lim_{x\to 0} \frac{e^{x}-1}{x} = 1$.

Question 2 (4 points)

Soit la fonction f définie sur $[-2; +\infty[$ par $f(x) = 2x \cdot \ln(x^3 - x + 7).$

Déterminer les coordonnées du ou des points d'intersection éventuels entre la courbe représentative C_f et l'axe des abscisses.

Question 3 (3 + 6 = 9 points)

- a) Résoudre dans \mathbb{R} l'équation suivante : $e^{\frac{x-2}{x}}=2$.
- **b)** Résoudre dans \mathbb{R} l'inéquation suivante : $\ln [(\ln x)^2] \ge 0$.

Question 4 (5 points)

Soit C_f la courbe représentative de la fonction f définie sur $\mathbb{R}\setminus\{2\}$ par $f(x)=\frac{e^{x^2+x}}{(2-x)^2}$.

Déterminer l'abscisse du ou des points en lesquels la courbe C_f admet une tangente passant par le point A(2;0).

Question 5 (4 + 8 + 2 = 14 points)

Soit la fonction f définie sur \mathbb{R}^* par $f(x) = \frac{e^{2x} - x - 1}{x}$.

 C_f est la courbe représentative de la fonction f.

- a) Étudier les limites aux bornes du domaine.
- **b)** Dresser le tableau de variations de la fonction f.
- c) En déduire que l'équation f(x) = 0 admet une solution unique sur \mathbb{R}^* .

Question 6 (4 points)

Calculer la valeur exacte de I = $\int_{-1}^{2} 3 \ln(x+2) dx$.

Question 7 (3 + 3 + 2 = 8 points)

On considère les intégrales $I = \int_0^1 \sqrt{4x+5} \ dx$ et $J = \int_0^1 \frac{x}{\sqrt{4x+5}} \ dx$.

- a) Exprimer I en fonction de J.
- **b)** Calculer I 4J.
- c) En déduire les valeurs exactes de I et de J.

Question 8 (6 + 2 = 8 points)

Soit la droite d passant par le point A(-12; 6; 11) et de vecteur directeur $\vec{u}(-4; 3; 1)$.

Soit la droite d' de représentation paramétrique $\begin{cases} x=-\frac{3}{2}t-6\\ y=3t+4\\ z=-15t-11 \end{cases} (t \in \mathbb{R}).$

- a) Étudier la position relative de d et d'.
- **b)** Déterminer les coordonnées du point d'intersection K de d' avec le plan $(0; \vec{j}, \vec{k})$.