EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES

Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date :	08	3.06.23	Durée :	08:15 - 11:15		Numéro candidat :	
Discipline :		Mathématiques - Mathématiques-Analyse		Section(s):		GSE	

Dans toutes les questions, le plan est muni d'un repère orthonormé.

Question 1 (4 + 4 = 8 points)

Démontrer les théorèmes suivants :

- a) Pour tout réel x et tout entier relatif $n : \exp(nx) = [\exp(x)]^n$.
- **b)** La fonction \ln est dérivable sur $]0; +\infty[$ et pour tout $x \in]0; +\infty[$ on a : $\ln'(x) = \frac{1}{x}$.

Question 2 (6 points)

Soit C_f la courbe représentative de la fonction f définie sur \mathbb{R} par $f(x) = x (e^x + 2)$.

Montrer que C_f n'admet pas de tangente horizontale.

Question 3 (1+3+1+2=7 points)

Soit C_f la courbe représentative de la fonction f définie sur $]-\infty$; $\ln 2$ [par $f(x)=\frac{(2x-4)e^x-4x}{2-e^x}$.

- a) Montrer qu'on peut écrire $f(x) = -2x \frac{4e^x}{2-e^x}$.
- **b)** En déduire la valeur exacte de l'intégrale $I = \int_{-1}^{0} f(x) dx$.
- c) Montrer que la courbe \mathcal{C}_f admet une asymptote oblique $\Delta.$
- d) Étudier la position relative de C_f par rapport à Δ .

Question 4 (4 points)

Soit la fonction f définie sur]2; $+\infty$ [par $f(x) = \frac{\ln(x^2 - 2x + 1)}{x - 2}$.

Déterminer les limites de la fonction f aux bornes de son domaine.

Question 5 (4 + 5 = 9 points)

Soit C_f la courbe représentative de la fonction f définie par $f(x) = \ln(-2x^4 + x^2 + 1)$.

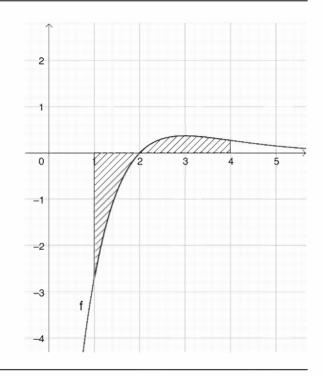
- a) Déterminer le domaine de définition de la fonction f.
- **b)** Dresser le tableau de variation de la fonction f.

Question 6 (6 points)

Déterminer le tableau des signes de la fonction f définie par $f(x) = \ln(e^{4x} - 2e^{2x} + 1) - 4x$.

Question 7 (4 points)

Soit C_f la courbe représentative de la fonction f définie par $f(x)=(x-2)\cdot e^{2-x}$ sur $]0;+\infty[$. Calculer la valeur exacte de l'aire du domaine hachuré de la figure ci-contre.



Question 8 (2 + 3 = 5 points)

Soit la fonction f définie sur]0; $+\infty$ [par $f(x) = \frac{2}{2x^2 + x}$.

- a) Déterminer les nombres réels a et b tels que $f(x) = \frac{a}{x} + \frac{b}{2x+1}$.
- **b)** En déduire par une intégration par partie $I = \int_1^4 \frac{\ln(2x+1)}{x^2} dx$ et écrire le résultat en fonction de $\ln 2$ et $\ln 3$.

Question 9 (2 + 4 + 4 + 1 = 11 points)

On considère les points A(-1; 4; 2), B(-2; 1; 2) et C(-3; 2; 0).

- a) Montrer que les points A, B et C définissent un plan P.
- b) Déterminer, au degré près, l'amplitude de l'angle BÂC.
- c) Montrer que le vecteur $\vec{n}(3; -1; -2)$ est un vecteur normal du plan P et en déterminer une équation cartésienne.
- d) Déterminer une représentation paramétrique de la droite d parallèle au plan P et passant par le point D(-2; 0; 3).