EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES

Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date :	19	9.05.23	Durée :	08:15 - 11:15		Numéro candidat :	
Discipline :		Mathématiques		Section(s):	GSE		

Dans toutes les questions, le plan est muni d'un repère orthonormé.

Question 1 [4+4 = 8 points]

Démontrer les théorèmes suivants :

- 1. $\lim_{x \to +\infty} e^x = +\infty;$
- 2. La fonction ln est dérivable sur $]0; +\infty[$ et $\forall x \in]0; +\infty[$: $(\ln)'(x)=\frac{1}{x}$.

Question 2 [3 points]

Soit la fonction f définie par $f(x) = \frac{1}{3x^3 - 14x^2 - 7x + 10}$

Déterminer l'ensemble de définition de la fonction f.

Question 3 [2+3 = 5 points]

Soit la fonction f définie sur $[3; +\infty[$ par $f(x) = \frac{3-x}{\sqrt{x^2-9}}$ si $x \neq 3$ et f(3) = 0.

- 1. Déterminer si f est continue en 3.
- 2. Déterminer si f est dérivable en 3. Interpréter graphiquement le résultat.

Question 4 [4 points]

Résoudre dans \mathbb{R} l'équation suivante :

$$\ln \sqrt{5 - 2x} - \ln(x - 1) = -\frac{1}{2} \ln(x + 3).$$

Question 5 [4 points]

Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{1-2x}{e^{3x}}$ et C_f sa courbe représentative dans un repère orthonormé.

Combien y a-t-il de tangentes à la courbe C_f passant par le point A(2;0) ?

Question 6 [(1+2+2+1) + (2+3) = 11 points]

- 1. Soit la fonction g définie sur $]0; +\infty[$ par $g(x)=2x+3\ln(x)-4.$
 - a) Déterminer les limites de *g* aux bornes du domaine de définition.
 - b) Étudier les variations de g et dresser son tableau de variation.
 - c) En déduire que l'équation g(x)=0 a une solution unique α dans $]0;+\infty[$. Donner un encadrement de α à 0,01 près.
 - d) Déterminer le signe de g(x) sur $]0; +\infty[$.
- 2. Soit la fonction f définie sur]0; $+\infty[$ par $f(x)=2\ln(x)-1+\frac{1-3\ln(x)}{x}$.
 - a) Déterminer les limites de f aux bornes du domaine de définition.
 - b) Calculer f'(x) et dresser le tableau de variation de la fonction f.

Question 7 [3+3 = 6 points]

Soit la fonction f définie sur \mathbb{R} par $f(x) = \ln (e^{2x} - 2e^x + 4e^{-x})$ et \mathcal{C}_f sa courbe représentative dans un repère orthonormé.

- 1. Montrer que C_f admet une asymptote oblique d en $+\infty$, dont on déterminera une équation.
- 2. Étudier la position de C_f par rapport à d.

Question 8 [2+2+1 = 5 points]

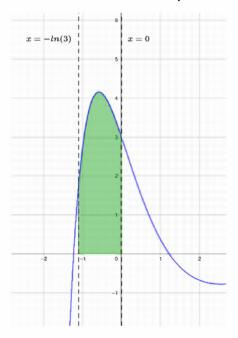
Soit la fonction f définie sur $\mathbb{R} \setminus \{-4;1\}$ par $f(x) = \frac{x^2 + 2x + 2}{x^2 + 3x - 4}$.

- 1. Déterminer les réels a, b et c tels que pour tout $x \in \mathbb{R} \setminus \{-4;1\}$: $f(x) = a + \frac{b}{x-1} + \frac{c}{x+4}$.
- 2. Calculer et donner la valeur exacte de $I = \int_2^3 \frac{x^2 + 2x + 2}{x^2 + 3x 4} dx$.
- 3. Calculer et donner la valeur exacte de $J=\int_{\frac{1}{2}e^{-\frac{5}{2}}}^2\frac{\ln(2x+5)}{2x+5}\,dx$.

Question 9 (6 points)

Soit la fonction f définie sur \mathbb{R} par $f(x) = (-2x^2 + 3) e^{-x}$ et C_f sa courbe représentative dans un repère orthonormé (voir graphique ci-dessous).

Calculer la valeur exacte et donner la valeur approchée à 0,01 près de l'aire A, exprimée en u.a. du domaine délimité par l'axe des abscisses et les droites d'équations $x=-\ln 3$ et x=0.



Question 10 (1+2+2+3 = 8 points)

1. On considère les plans P_1 et P_2 définis par :

$$P_1:5x + 2y - z = 0$$
 et $P_2:x - 4y + 3z - 1 = 0$

- a) Montrer que les plans P_1 et P_2 sont sécants (sans déterminer leur intersection).
- b) Déterminer une représentation paramétrique de leur droite d'intersection Δ .
- 2. Soit le plan P_3 d'équation x + 3y 2z + 1 = 0.
 - a) Étudier la position relative de Δ et du plan P_3 .
 - b) En déduire l'intersection des plans P_1 , P_2 et P_3 .