EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date :	17	.05.23	Durée :	08:15 - 10:15		Numéro candidat :	
Discipline :		Mathématiques		Section(s):		CACI	
		Mathématiques			GACV		

Question 1

(2+3+2+3+2+3+4=19 points)

Soit f la fonction définie par $f(x) = \frac{4x+8}{-2x+6}$

et soit \mathcal{C}_f sa courbe représentative dans un repère orthonormé.

- a) Déterminer le domaine de définition et le domaine de dérivabilité de f.
- b) Calculer la fonction dérivée de f.
- c) Etablir le tableau de variation de f (préciser les coordonnées des extrema éventuels).
- d) Calculer les coordonnées des points d'intersection éventuels de \mathcal{C}_f avec les axes du repère.
- e) Déterminer une équation de la tangente T_1 à \mathcal{C}_f au point d'abscisse 1.
- f) Etablir un tableau de valeurs contenant les images de -1; 0,5; 2,5; 3,5; 5 et 6 par f. Donner la valeur arrondie à 0,1 près des résultats.
- g) Construire C_f dans un repère orthonormé (unité : 0,5 cm).

<u>Question 2</u> (1+3+4 = 8 points)

Soit f la fonction définie par $f(x) = (x + 3) \cdot e^{-2x+1}$

- a) Déterminer le domaine de définition et le domaine de dérivabilité de f.
- b) Calculer la fonction dérivée de f.
- c) Etablir le tableau de variation de f (préciser les coordonnées des extrema éventuels).

Question 3 (4 points)

Calculer la dérivée seconde et établir le tableau de concavité de la fonction f définie sur $\mathbb R$ par :

$$f(x) = 3x^3 - 5x + 1$$
 (on admet que $D_{f'} = D_{f''} = \mathbb{R}$).

Préciser les coordonnées des points d'inflexion éventuels.

Question 4 (6+4 = 10 points)

Déterminer le domaine de définition, le domaine de dérivabilité et calculer la dérivée de la fonction f définie par :

a)
$$f(x) = \ln\left(\frac{2x^2}{-x-2}\right)$$
 (simplifier f' autant que possible)

b)
$$f(x) = \sqrt{-2x^2 + x + 3}$$

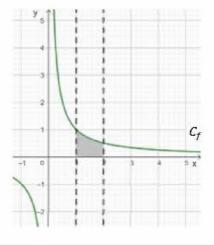
Question 5 (3+3 = 6 points)

Résoudre dans \mathbb{R} les inéquations suivantes après avoir déterminé leur domaine d'existence :

a)
$$e^3 \cdot e^x > \frac{(e^{2x})^3}{e^{-8}}$$

b)
$$\ln(2x+1) \le 3$$

<u>Question 6</u> (2+4+3 = 9 points)


- a) Trouver une primitive sur]0; $+\infty$ [de la fonction f définie par $f(x) = e^x 3x + x^{-3}$.
- b) Trouver la primitive sur $\mathbb R$ de la fonction f définie par $f(x)=(x+1)\cdot e^{x^2+2x-2}$ qui prend la valeur e^{-2} en x=0.
- c) Calculer la valeur exacte de l'intégrale ci-dessous :

$$\int_4^9 \left(4x + \frac{1}{\sqrt{x}}\right) \cdot e^{\sqrt{x} + x^2} dx$$

Question 7 (4 points)

On note C_f la courbe représentative de la fonction f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

Calculer l'aire A (en u.a.) du domaine grisé sur la figure ci-dessous.

