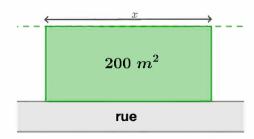
EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES

Sessions 2023 – QUESTIONNAIRE ÉCRIT


Date :	15	.05.23	Durée .	08:15 - 11:15	Numéro candidat :
Discipline :				Section(s):	
		Mathématiques			GA3D

Question 1 (2 + 4 = 6 points)

Une société de construction possède un grand terrain sur lequel elle veut construire des maisons individuelles. Chaque maison sera construite sur une parcelle rectangulaire de 200 m².

Le promoteur décide de poser une clôture sur trois côtés de chaque parcelle.

(La partie donnant sur la rue ne sera pas clôturée.)

On note x la longueur de la parcelle et L(x) la longueur de la clôture en fonction de x.

- 1) Montrer que L(x) = $x + \frac{400}{x}$
- 2) Comment doivent être choisies les dimensions de la parcelle pour que la longueur de la clôture soit minimale ? Préciser la longueur de la clôture.

Question 2 (4 + 6 = 10 points)

Résoudre dans R:

1)
$$2e^x - e^{-x} \ge 1$$

2)
$$\ln\sqrt{7x+2} + \ln\frac{1}{x} - \ln 2 = 0$$

Question 3 (4+3+4=11) points

Calculer les intégrales suivantes :

1)
$$\int_{1}^{2} \frac{4x^2 - x + 1}{2x} dx$$

2)
$$\int_{-1}^{2} (x+1) e^{-x} dx$$

3)
$$\int_{\frac{1}{2}}^{1} \frac{\ln(2x)}{3x} \, dx$$

Question 4((4+3+4)+(3+3)=17 points)

- A) Soit la fonction g la fonction définie sur \mathbb{R} par g(x) = $x \cdot e^x 1$
 - 1) Déterminer les limites de g aux bornes du domaine de définition.
 - 2) Calculer la dérivée de g. Dresser ensuite le tableau de variation de g.
 - 3) a) Démontrer que l'équation g(x) = 0 admet une solution unique α sur $[-1,+\infty[$.
 - b) Montrer que α appartient à l'intervalle [-1; 1] et donner un encadrement de α à 10⁻² près.
 - c) En déduire le tableau des signes de g.
- B) Soit la fonction f la fonction définie sur $[0, +\infty[$ par $f(x) = e^x \ln x$
 - 1) Montrer que pour tout x > 0, $f'(x) = \frac{g(x)}{x}$
 - 2) Dresser le tableau de variation de f.

Il n'est pas demandé de déterminer les limites de f aux bornes de son domaine de définition.

Question 5 (7 points)

Résoudre le système de 3 équations à 3 inconnues suivant. Interpréter géométriquement le résultat.

$$\begin{cases} x + 4y + 2z = -1 \\ 3x + y - z = 2 \\ 2x + y + \frac{z}{2} = 2 \end{cases}$$

Question 6(2+4+3=9 points)

On considère les plans $\pi_1:3x+y+z-4=0$ et $\pi_2:x-y-z=0$

- 1) Montrer que les plans π_1 et π_2 sont sécants (sans déterminer leur intersection).
- 2) Déterminer une représentation paramétrique de la droite d'intersection d des plans π_1 et π_2 .
- 3) Déterminer l'intersection de la droite d et du plan π_3 : x + 5y 4z 15 = 0 et en déduire l'intersection des trois plans.