EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES

Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date :	20	0.09.23	Durée :	08:15 - 10:15		Numéro candidat :	
Discipline :		Mathématiques - Mathématiques 2		Section(s) :		GIN	

I Probabilités et Combinatoire

$$5 + (2 + 4 + 1) + (2 + 2 + 2) = 18$$
 points

- 1) Résoudre dans N : $3 C_{n+2}^n = 5 C_n^2 41$.
- 2) Un sac contient 7 boules noires et 4 boules blanches, toutes indiscernables au toucher. On choisit au hasard et simultanément 3 boules du sac.
 - a) De combien de façons peut-on tirer 3 boules du sac?
 - b) Soit *B* la variable aléatoire qui représente le nombre de boules blanches tirées du sac. Déterminer la loi de probabilité de *B* (les probabilités seront données sous forme de fractions irréductibles).
 - c) Déterminer l'espérance mathématique de B sous forme d'une fraction irréductible.
- 3) Une boîte contient 9 fiches numérotées de 1 à 9 qui sont indiscernables au toucher. On tire au hasard, successivement et sans remise 4 fiches de cette boîte pour former un nombre de 4 chiffres.

(Les probabilités seront données sous forme de fractions irréductibles.)

- a) Combien de nombres différents peuvent être générés de cette façon ?
- b) Quelle est la probabilité que le nombre formé contienne les chiffres 1, 2, 3 et 9 dans n'importe quel ordre ?
- c) Quelle est la probabilité que les 4 chiffres soient tirés dans l'ordre décroissant?

II Matrices

$$(6+1+1+3)+(1+1+5+2+1)=21$$
 points

- 1) Soient la matrice $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{pmatrix}$ et le système $(S) \begin{cases} x + 2y + 3z 15 = 0 \\ y x + 2z 7 = 0 \\ 2x + z y 10 = 0 \end{cases}$.
 - a) Démontrer que A est inversible et déterminer les coefficients de A^{-1} .
 - b) Déterminer l'écriture matricielle du système (S).
 - c) A l'aide du résultat de la question a), démontrer que (S) est un système de Cramer.
 - d) Résoudre le système (S).

- 2) Soit la matrice $B = \begin{pmatrix} 2 & -2 \\ 2 & -2 \end{pmatrix}$ et soit I la matrice unité d'ordre 2.
 - a) Calculer B^2 .
 - b) Soit C = I + 3B. Déterminer tous les coefficients de la matrice C.
 - c) Montrer à l'aide des résultats précédents et par un raisonnement par récurrence que : Pour tout nombre naturel n, $C^n = \begin{pmatrix} 1+6n & -6n \\ 6n & 1-6n \end{pmatrix}$.
 - d) Montrer que C est inversible et que $C^{-1} = I 3B$.
 - e) Vrai ou Faux ? Justifier.

Pour toute matrice carrée M d'ordre 2, $MC = 0 \Leftrightarrow M = 0$, où O est la matrice carrée nulle d'ordre 2.

III Géométrie dans l'espace

$$(4+2)+3+(2+4)+(3+3)=21$$
 points

On considère un repère orthonormal $(0; \vec{i}, \vec{j}, \vec{k})$ de l'espace.

- 1) Démontrer les théorèmes suivants :
 - a) On considère deux vecteurs \vec{u} et \vec{v} de l'espace. \vec{u} et \vec{v} sont orthogonaux si, et seulement si, $\vec{u} \cdot \vec{v} = 0$.
 - b) On considère deux vecteurs $\vec{u}(x; y; z)$ et $\vec{v}(x'; y'; z')$ de l'espace. \vec{u} et \vec{v} sont orthogonaux si, et seulement si, xx' + yy' + zz' = 0.
- 2) Soient les points E(2;4;5) et F(4; -4;3).

Déterminer une équation cartésienne du plan \mathcal{M} médiateur du segment [EF].

- 3) Soient les points A(0;7;3), B(4;1;1) et C(1;5;2).
 - a) Vérifier que les points A, B et C définissent un plan (ABC).
 - b) Déterminer une équation cartésienne du plan (ÂBC).
- 4) Soient deux droites d et Δ ainsi qu'un plan $\mathcal{P}:x + 2y + 3z + 19 = 0$.

$$d: \begin{cases} x = t + 1 \\ y = -t \\ z = 2t \end{cases}, t \in \mathbb{R} \qquad \text{et} \quad \Delta: \begin{cases} x = 2s - 3 \\ y = 1 - s \\ z = s + 1 \end{cases}, s \in \mathbb{R}$$

- a) Déterminer l'intersection entre d et Δ .
- b) Déterminer l'intersection entre d et \mathcal{P} .