EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date :	30	3.06.23	Durée :	08:15 - 10:15		Numéro candidat :	
Discipline :		Mathématiques - Mathématiques 2		Section(s):		GIG	

Démontrer le théorème suivant :

Si dans un repère orthonormé on a : $\overrightarrow{u}(x;y;z)$ et $\overrightarrow{v}(x';y';z')$, alors $\overrightarrow{u}\cdot\overrightarrow{v}=xx'+yy'+zz'$.

Le plan complexe est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

A tout point M d'affixe $z \neq -2$, on associe le point M'(Z) avec :

$$Z = \frac{z - 2 - 3\mathbf{i}}{z + 2}.$$

- 1) Soit z = x + iy, avec x et y réels. Exprimer la partie réelle et la partie imaginaire de Z en fonction de x et y.
- 2) Déterminer l'ensemble ${\mathcal E}$ des points M(z), tels que Z soit réel.

- 1) Ecrire *a* sous forme exponentielle.
- 2) Faire une figure et déterminer la nature du triangle OAB.
- 3) Déterminer l'affixe du point K tel que OAKB soit un losange.

Le plan complexe est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

Soit \mathcal{E} l'ensemble des points M(z) du plan tels que $|3\bar{z}-2i|=|3iz-i+1|$.

Déterminer l'ensemble \mathcal{E} par la méthode géométrique.

et M(-1; -1; 1).

- 1) Montrer que les trois points K, L et M définissent un plan.
- 2) Etablir une équation cartésienne du plan (KLM).
- 3) Déterminer une représentation paramétrique de la droite d passant par N(2;2;3) et perpendiculaire au plan (KLM).
- 4) Déterminer les coordonnées du point I, projeté orthogonal de N sur le plan (KLM).

.....2+4+3+1=10 pts **Question 7**..... Dans un repère orthonormé direct $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, on donne les plans suivants de l'espace : $\mathcal{P}_1 : 2x - y + z = 3$ et $\mathcal{P}_2 : x - y + 2z + 1 = \mathbf{0}$

- 1) Déterminer si les plans \mathcal{P}_1 et \mathcal{P}_2 sont perpendiculaires.
- 2) Montrer que les plans \mathcal{P}_1 et \mathcal{P}_2 sont sécants en une droite d et donner une représentation paramétrique de cette droite.
- 3) On donne le plan $\mathcal{P}_3: y+3z-1=\mathbf{0}$. Déterminer l'intersection de la droite d et du plan \mathcal{P}_3 .
- 4) En déduire la position relative des trois plans.

Dans le repère orthonormé direct
$$(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$$
, on donne les droites
$$d_1: \begin{cases} x = 2+4k \\ y = 3-k \\ z = k \end{cases} \text{ et } d_2: \begin{cases} x = -2-l \\ y = l+13 \\ z = 2 \end{cases}$$

- 1) Etudier la position relative des droites d_1 et d_2 . Si ces droites sont sécantes, déterminer les coordonnées de leur point d'intersection I.
- 2) Déterminer les coordonnées du point A de la droite d_1 dont la cote vaut -2.
- 3) Vérifier que $B(-9; 2\mathbf{0}; 2)$ est un point de d_2 .
- 4) Déterminer la mesure d'un des deux angles géométriques, noté θ , formé par les deux droites d_1 et d_2 à $1 \bullet^{-2}$ degrés près.

$$d: \left\{ \begin{array}{ll} x &=& 1-m \\ y &=& 2+2m \qquad m \in \mathbb{R} \\ z &=& -m \\ \text{et le plan } \mathcal{P}: 3x-6y+3z-27 = \mathbf{0}. \end{array} \right.$$

Les affirmations suivantes sont-elles vraies ou fausses? Justifier.

- 1) **Affirmation** : d est parallèle au plan \mathcal{P} .
- 2) Affirmation : Le plan Q: 17x + 6y 5z 20 = 0 contient d.