EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date :	05	5.06.23	Durée :	08:15 - 10:15		Numéro candidat :	
Discipline :		Mathématiques - Mathématiques 2		Section(s):		GIG	

Question 1 [6 + 3 + 2 = 11 points]

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

On donne les points d'affixes respectives $z_A = -2\sqrt{3} e^{-i\frac{\pi}{6}}$ et $z_B = \frac{6\sqrt{3} + 6i}{-3 + i\sqrt{3}}$.

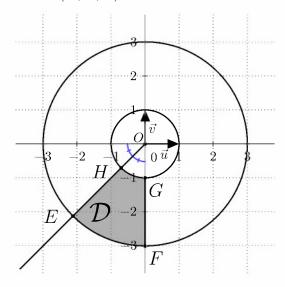
- 1. Écrire z_A et z_B sous forme exponentielle et sous forme algébrique.
- 2. Quelle est la nature du triangle OAB? Justifier.
- 3. Montrer que $Z = \frac{\left(z_B\right)^4}{\left(\overline{z_A}\right)^5}$ est un imaginaire pur.

Question 2 [2 points]

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

On a représenté ci-contre le domaine \mathcal{D} , frontières comprises, de points M dont l'affixe z a pour module r et pour argument θ .

Caractériser \mathcal{D} à l'aide de r et/ou de θ .



Question 3 [4+3=7 points]

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

M est le point d'affixe z = x + iy avec x, y réels.

À tout point M d'affixe $z \neq 3i$, on associe le point M' d'affixe $Z = \frac{i \overline{z} - 1 + 5i}{\overline{z} + 3i}$.

- 1. Exprimer la partie réelle et la partie imaginaire de Z en fonction de x et de y.
- 2. Déterminer l'ensemble ${\mathcal E}$ des points M pour lesquels Z est un réel.

Question 4 [5 points]

Démontrer le théorème suivant :

Si dans un repère orthonormé direct $\left(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$ on $a: \overrightarrow{u}(x; y; z)$ et $\overrightarrow{v}(x'; y'; z')$, alors les coordonnées de $\overrightarrow{u} \wedge \overrightarrow{v}$ sont

$$(yz' - zy'; -(xz' - zx'); xy' - yx')$$
.

Question 5
$$[(2+5)+(1+3)=11 \text{ points}]$$

L'espace est muni d'un repère orthonormé direct $(O; \vec{\imath}, \vec{\jmath}, \vec{k})$.

On donne les points A(1;4;-3), B(9;-2;-5) et les droites d et d' définies par :

$$d: \begin{cases} x = 6t \\ y = -3 - \frac{9}{2}t \\ z = 8 - \frac{3}{2}t \end{cases}, \quad t \in \mathbb{R} \qquad d': \begin{cases} x = -5 + \frac{1}{2}s \\ y = 2 - s \\ z = -1 + 5s \end{cases}, \quad s \in \mathbb{R}.$$

- 1. Les droites (AB) et d sont-elles coplanaires? Justifier.
- 2. Les droites d et d' sont-elles perpendiculaires? Justifier.
- 3. (a) Déterminer les coordonnées du point d'intersection C de la droite d avec le plan $\left(O; \overrightarrow{j}, \overrightarrow{k}\right)$.
 - (b) Calculer l'aire du triangle ABC (valeur exacte).

Question 6
$$[2 + (2 + 2 + 2) + (1 + 2 + 3 + 1) = 15 \text{ points}]$$

L'espace est muni d'un repère orthonormé direct $(O; \vec{\imath}, \vec{\jmath}, \vec{k})$.

On donne les points A(3; -2; -1), B(-4; -1; 3), C(0; -2; 5) et le plan $\mathcal{P}: -4x+y-5z-12=0$.

- 1. La droite (AB) est-elle parallèle au plan \mathcal{P} ? Justifier.
- 2. (a) Vérifier que les points A, B et C ne sont pas alignés.
 - (b) \mathcal{Q} est le plan passant par A et contenant la droite (BC). Déterminer les coordonnées d'un vecteur normal au plan \mathcal{Q} .
 - (c) Déterminer une équation cartésienne du plan \mathcal{Q} .
- 3. (a) Vérifier que le point A n'appartient pas au plan \mathcal{P} .
 - (b) Déterminer une représentation paramétrique de la droite d passant par A et perpendiculaire au plan \mathcal{P} .
 - (c) Déterminer les coordonnées du projeté orthogonal H de A sur le plan \mathcal{P} .
 - (d) En déduire la distance du point A au plan \mathcal{P} (valeur exacte).

Question 7 [2 + 4 + 3 = 9 points]

L'espace est muni d'un repère orthonormé direct $(O;\,\vec{\imath},\,\vec{\jmath},\,\vec{k}).$

On donne les plans :

$$\mathcal{P}_1: 3x + 2y + 3z + 4 = 0; \quad \mathcal{P}_2: 8x + 3y - 6z = 15; \quad \mathcal{P}_3: -5x - y + 9z - 19 = 0.$$

- 1. Vérifier (sans déterminer leur intersection) que les deux plans \mathcal{P}_1 et \mathcal{P}_2 sont sécants.
- 2. Déterminer une représentation paramétrique de la droite d'intersection Δ des plans \mathcal{P}_1 et \mathcal{P}_2 .
- 3. Étudier la position relative de la droite Δ et du plan \mathcal{P}_3 et en déduire l'intersection des trois plans.