EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES

Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date :	15	5.05.23	Durée :	08:15 - 11:15		Numéro candidat :	
Discipline :		Mathématiques - Mathématiques 1		Section(s):		GIG / GIN	

Question 1 [(3+4) + 2 = 9 points]

1. Démontrer :

Pour tout entier $n, n \ge 1$:

(a)
$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$

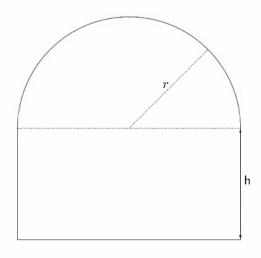
(b)
$$\lim_{x \to -\infty} x^n e^x = 0$$

2. **Démontrer :** Pour tous réels a > 0 et b > 0 : $\ln(ab) = \ln(a) + \ln(b)$

Question 2 [5 + 3 = 8 points]

La section transversale d'un tunnel a la forme d'un rectangle surmonté d'un demicercle de rayon r (en m) avec : $0 < r < \frac{24}{\pi + 2}$.

Un côté du rectangle mesure h (en m). Le périmètre $\mathcal P$ du tunnel mesure 24 m.



1. Montrer que l'aire $\mathscr A$ de la section transversale du tunnel est donnée par :

$$\mathscr{A}(r) = 24 \, r - \left(\frac{\pi}{2} + 2\right) \, r^2$$

2. Quelles doivent être les dimensions exactes de r et de h du tunnel pour que l'aire $\mathscr A$ soit maximale?

Question 3 [4 + 6 = 10 points]

Résoudre dans \mathbb{R} les (in)équations suivantes :

1.
$$e^{2x+1} > e^{\frac{3}{x}}$$

2.
$$\ln(2x) = \ln\sqrt{13x - 5} - \ln\sqrt{x + 1}$$

Question 4 [2 + 2 + 5 = 9 points]

Soit
$$f$$
 la fonction définie sur \mathbb{R}_+ par $f(x) = \begin{cases} \frac{e^{2x} - 1}{x} & \text{si } x > \mathbf{0} \\ 2 & \text{si } x = \mathbf{0} \end{cases}$

Soit \mathcal{C}_f sa courbe représentative dans un repère orthonormé.

Soit
$$g$$
 la fonction définie sur \mathbb{R} par $g(x) = \frac{e^x + 1}{e^x}$.

Soit \mathcal{C}_g sa courbe représentative dans un repère orthonormé.

Est-ce que les affirmations suivantes sont vraies ou fausses? Justifier.

- 1. Affirmation 1 : f est continue en \bullet .
- 2. Affirmation 2 : \mathcal{C}_f admet une asymptote horizontale.
- 3. Affirmation 3: Il existe trois tangentes à $\mathscr{C}_{\mathfrak{g}}$ qui passent par le point $A(1; \mathbf{0})$

Question 5 [3 + 3 + 3 = 9 points]

Soit
$$f$$
 la fonction définie sur $I =]1; +\infty[$ par $f(x) = \frac{2x+1}{x-1} \ln(x-1).$

Soit \mathcal{C}_f sa courbe représentative dans un repère orthonormé.

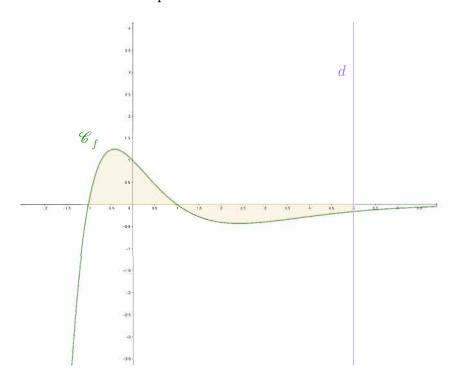
- 1. Montrer que pour tout $x \in I$: $f'(x) = \frac{g(x)}{(x-1)^2}$ avec $g(x) = 2x+1-3 \ln(x-1)$.
- 2. Déterminer le signe de g(x).
- 3. Donner le tableau de variations complet de f.

Question 6 [1 + 7 = 8 points]

On considère la fonction f définie sur $\mathbb R$ par $f(x)=(1-x^2)\cdot e^{-x}$.

On note par \mathcal{C}_f la courbe représentative de f dans un repère orthonormé.

On note d la droite d'équation x = 5.



- 1. Déterminer les coordonnées des points d'intersection de \mathscr{C}_f avec l'axe des abscisses.
- 2. Déterminer la valeur exacte de l'aire \mathcal{A} de la partie colorée délimitée par la courbe \mathcal{C}_f , l'axe des abscisses et la droite d.

Question 7 [5 + 2 = 7 points]

Soit f la fonction définie sur $I = \mathbb{R} \setminus \{-2\}$ par $f(x) = \frac{2x^2 + 7x + 7}{(x+2)^2}$.

1. Déterminer les réels a, b et c tels que :

$$\forall x \in \mathbb{R} \setminus \{-2\} : f(x) = a + \frac{b}{x+2} + \frac{c}{(x+2)^2}$$

2. Calculer l'intégrale suivante sur l'intervalle] $-\infty; -2[$:

$$\mathscr{I} = \int f(x) \, \mathrm{d}x$$