
EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 – QUESTIONNAIRE ÉCRIT

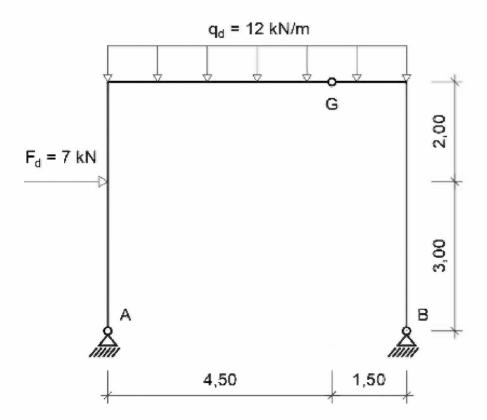
Date :	19.0	05.23	Durée :	14:15 - 17:15		Numéro candidat :			
Disciplin	ie:			Section(s):					
		Construction	on			GA3D			

<u>Aufgabe 1:</u> 2 + 4 + 12 = 18 Punkte

Der dargestellte Gelenkträger besitzt drei Auflager in den Punkten A, B und C, sowie ein Gelenk in Punkt G.

- a) Der Grad der statischen (Un)bestimmtheit ist festzustellen.
- b) Die Auflagerreaktionen sind zu berechnen.
- c) Die Zustandslinien der Normalkräfte (N), der Querkräfte "V" und der Biegemomente "M" sind zu erstellen! Hierbei sind alle relevanten Werte zu berechnen und in den Diagrammen zu zeigen!

Aufgabe 2:


2 + 4 + 12 + 4 = 22 Punkte

Der dargestellte Dreigelenkrahmen soll analysiert werden.

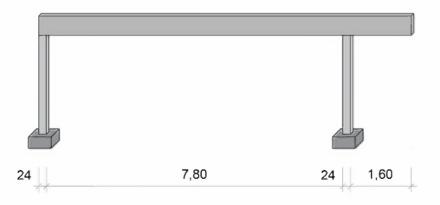
Die angegebene Streckenlast q_d enthält bereits den Sicherheitsbeiwert.

Gefordert werden folgende Berechnungen:

- a) Bestimme den Grad der statischen (Un)bestimmtheit!
- b) Bestimme die Auflagerkräfte des Rahmens!
- c) Erstelle die Schnittkraftdiagramme der Normalkräfte "N", der Querkräfte "V" und der Biegemomente "M"! Berechne hierbei alle relevanten Werte und zeige sie in den Diagrammen!
- d) Der Riegel ist als Breitflanschträger (HEM-Profil) nach EuroCode 3 zu dimensionieren. Es ist die Stahlsorte Fe360 mit f_y = 235 N/mm² zu wählen. (*der Sicherheitsbeiwert auf der Materialseite ist zu berücksichtigen*). Zur Auswahl des Trägers steht die Tabelle im Anhang zur Verfügung.

Aufgabe 3:

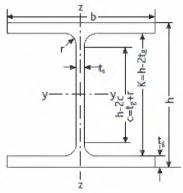
1 + 3 + 4 + 6 + 6 = 20 Punkte


Der gezeigte Stahlbetonbalken mit Rechteckquerschnitt b = 24 cm x h = 45 cm wird von zwei Stützen mit quadratischem Querschnitt a = 24 cm getragen. Der Balken wird durch sein Eigengewicht g_k = 25 kN/m³ belastet. Zusätzlich wirkt auf den Balken eine gleichmäßig verteilte Streckenlast g_k = 15 kN/m. (Die angegebenen Werte sind charakteristisch)

Angaben zur Einbausituation des Trägers:

- Expositionsklasse: XC4 (wechselnd nass und trocken) ⇒ c_{nom} = 40 mm
- Betonfestigkeitsklasse: C45/55
- Verwendeter Betonstahl BST500S mit f_v = 500/mm²
- Angenommener Bügelquerschnitt: d_{Bü} = 8 mm

Folgende Punkte sind zu behandeln:


- a) Ermittle die Stützweiten leff für den Balken!
- b) Erstelle das statische Ersatzsystem für den Balken und berechne die Auflagerreaktionen! Die beiden Stützen stellen hierbei die Auflager für den Balken dar. Das linke Auflager wird als Festlager ausgeführt.
- c) Erstelle die Schnittkraftdiagramme der Querkräfte "V" und der Biegemomente "M"! Berechne hierbei alle relevanten Werte und zeige sie in den Diagrammen!
- d) Die erforderliche Biegezugbewehrung ist für den Bereich des Feldes zu bestimmen. Wähle hierbei eine wirtschaftliche Alternative! Fertige eine Bewehrungsskizze vom Balkenquerschnitt für den Bereich des Feldes im Maßstab 1:10 an! Trage alle, zur Herstellung des Balkens, erforderlichen Maße ein!
- e) Die erforderliche Biegezugbewehrung ist für den Bereich des **Kragarmes** zu bestimmen. Wähle hierbei eine wirtschaftliche Alternative! Fertige eine Bewehrungsskizze vom Balkenquerschnitt für den Bereich des Kragarmes im Maßstab 1:10 an! Trage alle, zur Herstellung des Balkens, erforderlichen Maße ein!

Anhang:

Breite I-Träger (Breitflanschträger)

verstärkte Ausführung, mit parallelen Flanschflächen Reihe HE-M = IPBv DIN 1025 Teil 4 DIN EN 10 034

Be- zeich- nung	Abmessungen in mm					Quer- HG DIN U schnitt			Für die Biegeachse y - y			z - z					
						A		G		J _y	W _y	l _y	J _{2.}	W _z	į	S _y	S _y
не м	h	ь	t _s	t	г	cm²	kg/m	kg/m	m²/m	cm ⁴	cm³	cm	cm ⁴	cm³	cm	cm³	cm
100 120 140 160 180	120 140 160 180 200	106 126 146 166 186	12,5 13,0 14,0	20,0 21,0 22,0 23,0 24,0	12 12 15	53,2 66,4 80,5 97,1 113,0	42,8 53,4 64,8 78,1 91,1	41,8 52,1 63,2 76,2 88,9	0,619 0,738 0,857 0,970 1,090	1140 2020 3290 5100 7480	190 283 411 568 748	4,63 5,51 6,39 7,25 8,13	399 703 1140 1760 2580	75,3 112,0 157,0 212,0 277,0	2,74 3,25 3,77 4,26 4,77	118 175 247 337 442	9,88 11,50 13,30 15,10 16,90
200 220 240 260 280	220 240 270 290 310	206 226 248 263 288	15,5 18,0 18,0	32,0 32,5	18 21 24	149,0 200,0		103,0 117,0 157,0 172,0 189,0	1,200 1,320 1,480 1,570 1,690	10640 14600 24290 31310 39550	967 1220 1800 2160 2550	9,00 9,89 11,00 11,80 12,80	3650 5010 8150 10450 13160	354,0 444,0 657,0 780,0 914,0	5,27 5,79 6,29 6,90 7,40	568 710 1060 1260 1480	18,70 20,80 22,90 24,30 26,70
300 320 340 360	340 359 377 395	310 309 309 308	21,9 21,0	39,0 40,0 40,0 40,0	27 27	312,0 316,0	244,0 251,0 254,0 256,0	238,0 245,0 248,0 250,0	1,830 1,870 1,900 1,930	59 200 68 130 76 370 84 870	3 480 3800 4050 4300	14,00 14,80 15,60 16,30	19400 19710 19710 19520	1250,0 1280,0 1280,0 1270,0	8,00 7,95 7,90 7,83	2040 2220 2360 2490	29,00 30,70 32,40 34,00
400 450 500 550 600	432 478 524 572 620		21,0 21,0 21,0	40,0 40,0	27 27 27	335,0 344,0 354,0	277,0	256,0 263,0 270,0 278,0 285,0	2,000 2,100 2,180 2,280 2,370	104 100 131 500 161 900 198 000 237 400	4820 5500 6180 6920 7660	17,90 19,80 21,70 23,60 25,60	19340 19340 19150 19150 18280	1260,0 1260,0 1250,0 1250,0 1240,0	7,70 7,59 7,48 7,35 7,22	2790 3170 3550 3970 4390	37,40 41,50 45,70 49,80 54,10
650 700 800 900 1000	668 716 814 910 1008	306 304 303 302 302	21,0 21,0 21,0	40,0 40,0 40,0 40,0 40,0	27 30 30	383,0 404,0	300,0 309,0 325,0 341,0 358,0	293,0 301,0 317,0 333,0 349,0	2,470 2,560 2,750 2,930 3,130	281700 329300 442600 570400 722300	8430 9200 10870 12540 14330	27,50 29,30 33,10 36,70 40,30	18980 18860 18630 18450 18460	1240,0 1240,0 1230,0 1220,0 1220,0	7,13 7,01 6,79 6,60 6,45	4830 5270 6240 7220 8280	58,30 62,50 70,90 79,00 87,20

Maße in mm

A = Querschnitt U = Mantelfläche J = Trägheitsmoment W = Widerstandsmoment $\begin{array}{ll} i &= \sqrt{J}; A = Trägheitshalbmesser\\ \text{(bezogen auf die zugehörige Biegeachse)}\\ S_y &= Statisches Moment des halben I-Querschnittes\\ s_y &= J_y S_y = Abstand der Zug- und Druckmittelpunkte \end{array}$

12/15			Betonfo	$k_{\rm s}$	ξ	ζ	$arepsilon_{ m c2}$ in ‰	$oldsymbol{arepsilon}_{\mathrm{s}1}$ in ‰					
15,75 8,50 6,16 5,06 4,45 4,04 3,63 3,35 3,14 2,97 2,85 2,72	13,64 7,36 5,33 4,38 3,85 3,50 3,14 2,90 2,72 2,57 2,47 2,36	12,20 6,58 4,77 3,92 3,44 3,13 2,81 2,60 2,43 2,30 2,21 2,11	10,91 5,89 4,27 3,50 3,08 2,80 2,51 2,32 2,18 2,06 1,97 1,89	9,96 5,37 3,89 3,20 2,81 2,56 2,29 2,12 1,99 1,88 1,80	9,22 4,97 3,61 2,96 2,60 2,37 2,12 1,96 1,84 1,74 1,67	8,62 4,65 3,37 2,77 2,44 2,21 1,99 1,84 1,72 1,63 1,56	8,13 4,39 3,18 2,61 2,30 2,09 1,87 1,73 1,62 1,53 1,47	7,71 4,16 3,02 2,48 2,18 1,98 1,78 1,64 1,54 1,46 1,46	2,32 2,34 2,36 2,38 2,40 2,42 2,45 2,48 2,51 2,54 2,57 2,60	0,025 0,049 0,070 0,090 0,107 0,124 0,147 0,174 0,201 0,227 <u>0,250</u> 0,277	0,991 0,983 0,975 0,966 0,958 0,950 0,939 0,927 0,916 0,906 0,896 0,885	-0,52 -1,02 -1,51 -1,97 -2,41 -2,83 -3,46 -3,50 -3,50 -3,50 -3,50 -3,50	20,00 20,00 20,00 20,00 20,00 20,00 20,00 16,56 13,90 11,91 10,52 9,12
2,62 2,54 2,47	2,27 2,20 2,14	2,03 1,97 1,91	1,82 1,76 1,71	1,66 1,61 1,56	1,54 1,49 1,44	1,44 1,39 1,35	1,36 1,31 1,27	1,29 1,24 1,21	2,63 2,66 2,69	0,302 0,325 <u>0,350</u>	0,875 0,865 0,854	-3,50 -3,50 -3,50	8,10 7,26 6,50
2,41 2,35 2,28 2,23 2,18	1,98 1,93	1,86 1,82 1,77 1,73	1,67 1,63 1,58 1,54 1,51	1,52 1,49 1,44 1,41 1,38	1,41 1,38 1,34 1,30 1,28	1,32 1,29 1,25 1,22 1,19	1,24 1,21 1,18 1,15 1,13	1,18 1,15 1,12 1,09 1,07	2,72 2,75 2,79 2,83 2,87	0,371 0,393 0,422 <u>0,450</u> 0,477	0,846 0,836 0,824 0,813 0,801	-3,50 -3,50 -3,50 -3,50 -3,50	5,93 5,40 4,79 4,27 3,83
2,14 2,10 2,06 2,03 1,99		1,65 1,62 1,60 1,57 1,54	1,48 1,45 1,43 1,40 1,38	1,35 1,33 1,30 1,28 1,26	1,25 1,23 1,21 1,19 1,17	1,17 1,15 1,13 1,11 1,09	1,10 1,08 1,07 1,05 1,03	1,05 1,03 1,01 0,99 0,98	2,91 2,95 2,99 3,04 3,09	0,504 0,530 0,555 0,585 0,617	0,790 0,780 0,769 0,757 0,743	-3,50 -3,50 -3,50 -3,50 -3,50	3,44 3,11 2,81 2,48 2,17

Tafel: Dimensionsgebundene Bemessungstafel (k_{d} -Verfahren) für Rechteckquerschnitte ohne Druckbewehrung für Biegung, Quelle: Schneider-Bautabellen, Tafel 3a