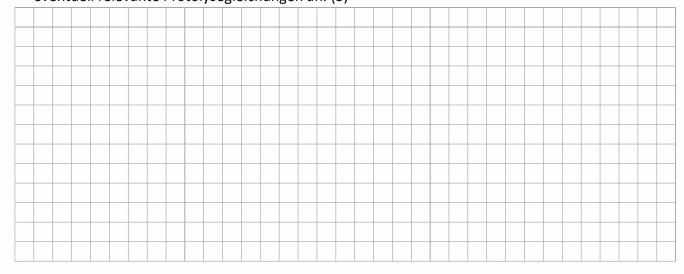
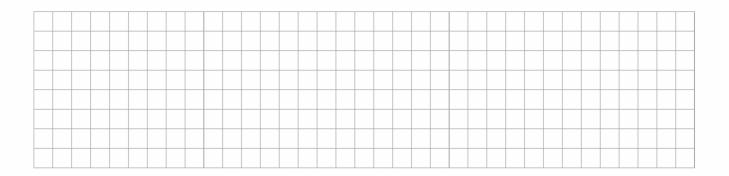
EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 — QUESTIONNAIRE ÉCRIT Date: 08.06.23 Durée: 08:15 - 10:45 Numéro candidat: Discipline: Section(s): GSN


Allgemeine Bemerkung: es gibt immer nur eine einzige richtige Antwort bei den Fragen mit Mehrfachantworten (Multiple choice questions)

I. Säure-Base-Reaktionen (6 + 5 + 5 = 16 Punkte)

Frage 1: Salzlösungen (3 + 3 = 6 Punkte)


a) Magnesiumdihydrogenphosphat wird in Wasser gelöst.

Geben Sie die Lösungsgleichung des Salzes in Wasser an. Bestimmen Sie anschließend den Säure-Base-Charakter der Lösung. Begründen Sie Ihre Antwort ausführlich und geben Sie eventuell relevante Protolysegleichungen an. (3)

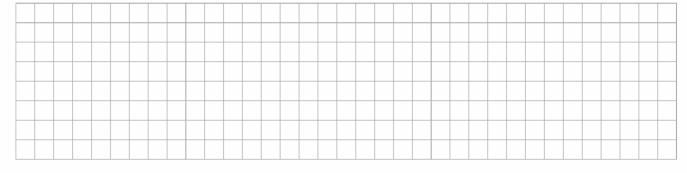
b) Sie sollen durch Verdünnung 250~mL einer Ammoniumcarbonat-Lösung herstellen, die eine Stoffmengenkonzentration von $c=0.020~\text{mol}\cdot\text{L}^{-1}$ besitzt. Zur Verfügung steht Ihnen eine konzentrierte Ammoniumcarbonat-Lösung ($\omega=6.0~\%$; $\rho_{\text{LS}}=1.04~\text{g}\cdot\text{cm}^{-3}$). Welches Volumen an konzentrierter Lösung müssen Sie entnehmen? (3)

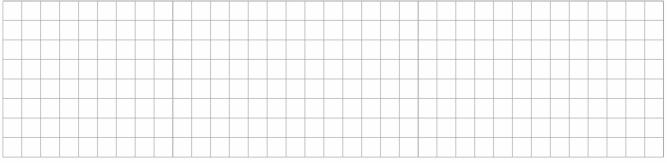
Frage 2: Sorbinsäure und Kaliumsorbat (3 + 2 = 5 Punkte)


Sorbinsäure (C_5H_7COOH) ist eine schwache Säure mit p $K_S=4,76$. Sorbinsäure wird unter der Kennzeichnung E 200 als Konservierungsmittel für unterschiedliche Lebensmittel wie Brot, Käse oder Margarine verwendet.

Die korrespondierende Base der Sorbinsäure wird Sorbat genannt. Kaliumsorbat (E 202) wird ebenfalls als Konservierungsmittel eingesetzt.

a) Zu 80~mL einer Sorbinsäure-Lösung ($c=0.25~\text{mol}\cdot\text{L}^{-1}$) werden 0.003~mol Calciumhydroxid gegeben. Formulieren Sie die Reaktionsgleichung und berechnen Sie den pH-Wert der gebildeten Lösung. (3)


b) Welches Volumen an Kaliumsorbat-Lösung $(\beta(C_5H_7COOK) = 15 \text{ g} \cdot \text{L}^{-1})$ muss zu 0,020 mol Sorbinsäure gegeben werden, um ein Gemisch mit einem pH-Wert von 4,76 zu erhalten? (2)


Frage 3: Titration (1 + 1 + 3 = 5 Punkte)

Bei der Titration von 20,0~mL einer unbekannten Natriumsalz-Lösung mit Salzsäure 0,100~M, wird der Äquivalenzpunkt nach Zugabe von 24,4~mL Salzsäure erreicht. Der pH-Wert am Halbäquivalenzpunkt beträgt 9,40.


a) Identifizieren Sie das Anion des Salzes, wissend, dass es sich um eine schwache Base der beigefügten Tabelle handelt. Begründen Sie Ihre Antwort kurz. (1)

b) Berechnen Sie die Stoffmengenkonzentration der schwachen Base vor der Titration. (1)

c) Berechnen Sie den pH-Wert am Äquivalenzpunkt. (3)

II. Redoxreaktionen und Elektrochemie (5 + 4 = 9 Punkte)

Frage 4: Standard-Wasserstoff-Elektrode und Vorhersage von Reaktionen (2 + 3 = 5 Punkte)

a) Beschreiben Sie den Aufbau einer Standard-Wasserstoff-Elektrode. (2)

- b) Bei einem Versuch wird ein Kupferblech in eine Salpetersäure-Lösung getaucht.
 - Findet eine spontane Reaktion statt?
 - Begründen Sie Ihre Antwort ausführlich, indem Sie zuerst alle im Gemisch vorhandenen Teilchen angeben und alle möglichen Redoxpaare nach steigendem Standardpotenzial auflisten.
 - Erklären Sie anschließend mithilfe der elektrochemischen Spannungsreihe, inwiefern eine spontane Reaktion stattfindet. Formulieren Sie im Fall einer spontanen Reaktion die Teilgleichungen für Oxidation und Reduktion sowie die Gesamtgleichung. (3)

Frage 5: Multiple-Choice-Fragen (1+1+1+1=4) Punkte

$2 \operatorname{Cr}^{3+}(aq) + 21 \operatorname{H}_2 O(l) \rightleftharpoons \operatorname{Cr}_2 O_7^{2-}(aq) + 14 \operatorname{H}_3 O^+(aq) + 6 \operatorname{e}^-$

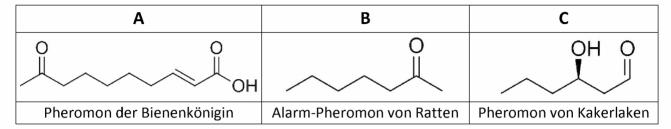
Was ist die Oxidationszahl von Chrom in $Cr_2O_7^{2-}$? (1)

a) Folgende Teilgleichung besitzt ein Standardpotenzial von 1,33 V:

- Α +III
- В +VI
- С +VII
- D +VIII
- b) Welche Aussage über das Daniell-Element ist korrekt? (1)
 - Metallisches Zink wird oxidiert.
 - В Die Kupfer-Elektrode entspricht dem Minuspol.
 - Die Kupfer-Elektrode löst sich langsam auf.
 - D Elektronen fließen über einen Leiter von der Kupfer-Elektrode zu der Zink-Elektrode.
- c) Welche Aussage über die Elektrolyse von Zinkiodid ist falsch? (1)
 - A An der Anode werden lodid-lonen oxidiert.
 - В Die Anode entspricht dem Pluspol.
 - C An der Kathode färbt sich die Flüssigkeit braun/gelb.
 - D Die Zink-Kationen wandern in der Lösung zur Kathode.
- d) Sauerstoff-Wasserstoff-Brennstoffzelle mit saurem und mit basischem Elektrolyt.

Welche Aussage ist falsch? (1)

Unabhängig davon, ob es sich um die Brennstoffzelle mit saurem oder mit basischem Elektrolyt handelt,


- wird Sauerstoff an der Kathode reduziert.
- В entsteht Wasser als Produkt am Pluspol.
- C beträgt die Spannung 1,23 V.
- D wird Wasserstoff am Minuspol oxidiert.

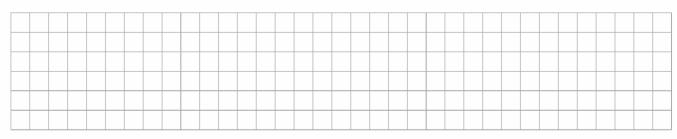
III. Organische Chemie (10 + 16 + 4,5 + 4,5 = 35 Punkte)

Frage 6: Pheromone (3 + 2 + 3 + 2 = 10 Punkte)

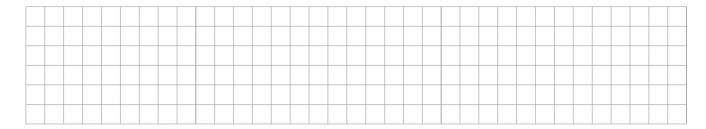
Pheromone sind Botenstoffe, die von Lebewesen freigesetzt werden, um mit Artgenossen zu kommunizieren. Pheromone steuern viele verschiedene Phänomene. Die Bienenkönigin gibt zum Beispiel ein Pheromon ab, das die Ausbildung der Eierstöcke von ihren Arbeiterinnen hemmt.

Betrachtet werden folgende 3 Pheromone:

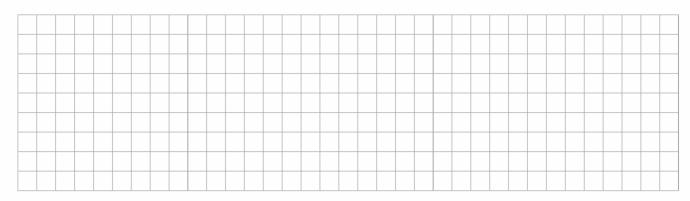
a) Benennen Sie die Pheromone **A** und **C** mit dem vollständigen IUPAC-Namen, inklusive Angabe der Konfiguration. (3)



b) Bei welchem der Pheromone bildet sich mit dem Tollens-Reagenz ein Silberspiegel? Begründen Sie Ihre Antwort, indem Sie die Gesamtgleichung mit Skelettformeln formulieren, die dabei abläuft. (2)

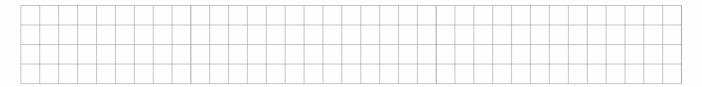


c) Das Pheromon **B** kann in zwei Schritten aus Hept-1-en hergestellt werden. Formulieren Sie die entsprechenden Gesamtgleichungen mit Skelettformeln.

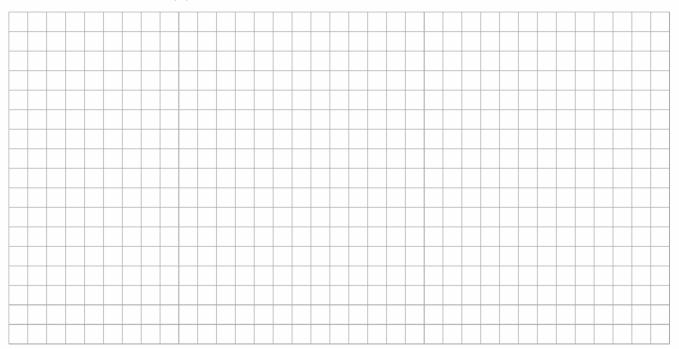

i. Addition von Wasser an Hept-1-en (nur das Hauptprodukt angeben). (1)

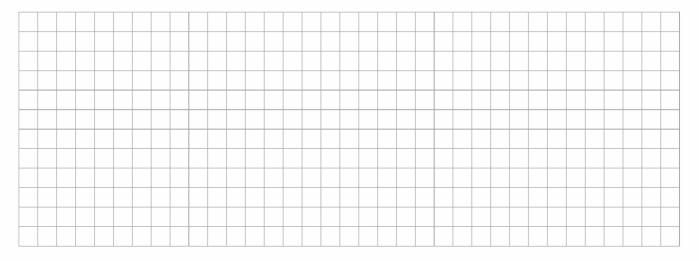
ii. Oxidation des Hauptproduktes aus i. mit Kupfer(II)-oxid. Geben Sie die 4 relevanten Oxidationszahlen an. (2)

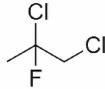
d) Ein weiteres Pheromon, das von einigen Ameisenarten als Alarmpheromon benutzt wird, ist Hexan-3-ol. Bei der Eliminierung von Hexan-3-ol in Gegenwart einer Säure können 4 unterschiedliche, isomere Alkene entstehen (Konstitutions- und Konfigurationsisomere). Zeichnen Sie die Skelettformel der 4 möglichen Isomere. (2)


Frage 7: Montreal-Protokoll (2 + 4 + 10 = 16 Punkte)

Das Montreal-Protokoll ist ein internationales Umweltabkommen, das Stoffe (hauptsächlich Halogenalkane) reguliert, die die Ozonschicht zerstören. Es ist das erste Abkommen in der Geschichte der Vereinten Nationen, das von allen Mitgliedern unterschrieben wurde und es wird als "das vielleicht erfolgreichste internationale Abkommen aller Zeiten" bezeichnet.


a) Einer der Stoffe, die durch das Montreal-Protokoll geregelt ist, ist das Kältemittel Dichlordifluorethan, wovon 4 Konstitutionsisomere existieren. Zeichnen Sie die 4 Konstitutionsisomere mit der Halbstrukturformel. (2)

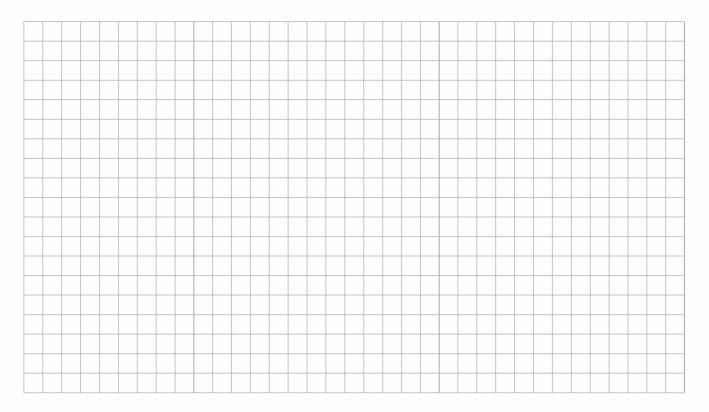

- b) Ebenfalls geregelt ist 1-Brom-2-fluorethan.
 - i. 1-Brom-2-fluorethan kann durch die Reaktion von Fluorethan mit Brom unter Lichteinfluss hergestellt werden. Formulieren Sie die entsprechende Gesamtgleichung mit Summenformeln. (1)


ii. Formulieren Sie mit Strukturformeln die zwei Gleichungen der Kettenfortpflanzung des Mechanismus der Reaktion von Fluorethan mit Brom, die zu 1-Brom-2-fluorethan als Produkt führen. (2)

iii. Formulieren Sie mit Strukturformeln die Kettenabbruch-Reaktion, die zu einem Difluoralkan führt. (1)

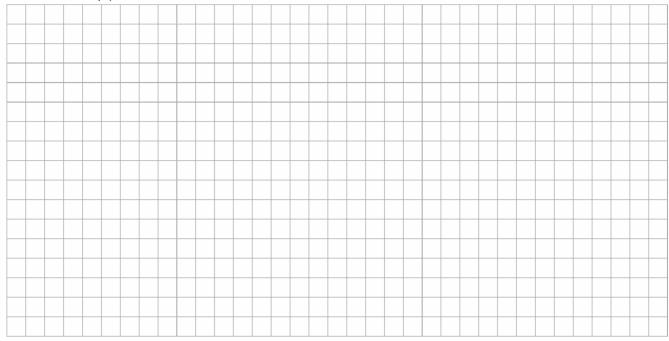
c) Ein weiteres Molekül, das durch das Protokoll stark eingeschränkt wird, ist rechts abgebildet.

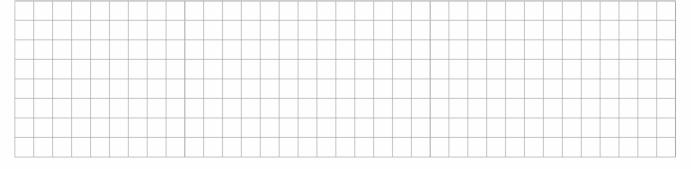
i. Benennen Sie das Molekül nach IUPAC. (0,5)



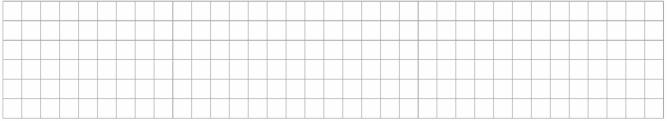
ii. Zeichnen Sie das (S)-Enantiomer des Moleküls in der Keil-Strich-Schreibweise. Begründen Sie Ihre Antwort, indem Sie die Prioritäten nach CIP angeben und das asymmetrische C-Atom markieren. (1,5)

iii. Das Molekül kann durch die Reaktion von 2-Fluorprop-1-en mit Chlor hergestellt werden. Formulieren Sie den ausführlichen Reaktionsmechanismus mit Texterklärungen dieser Reaktion. (4,5)

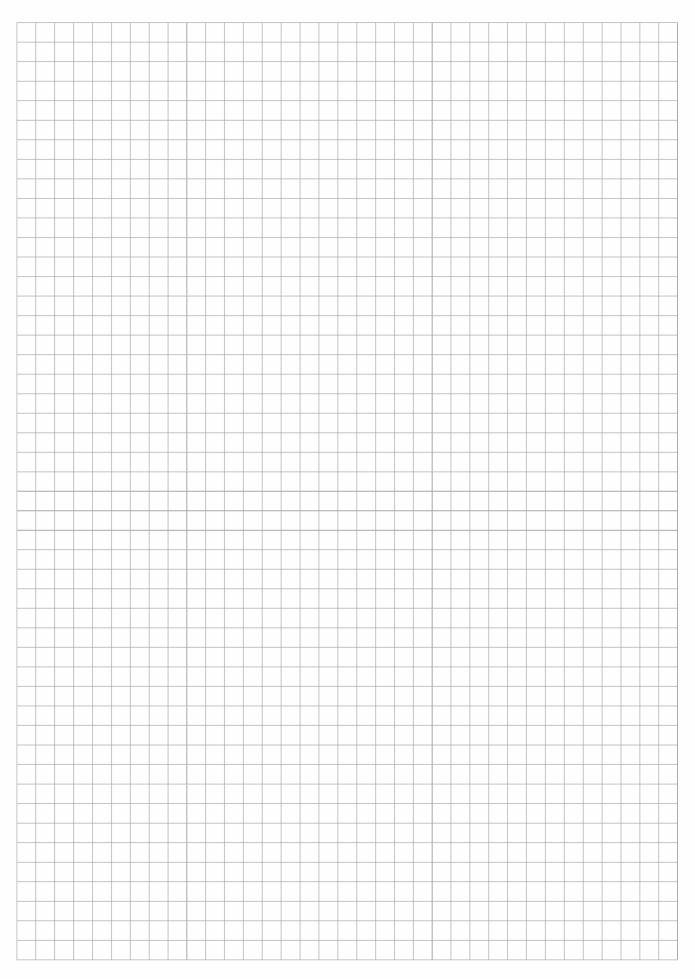

iv. Welches Molekül reagiert schneller mit Chlor: 2-Fluorprop-1-en oder 2-Methylbut-2-en? Begründen Sie Ihre Antwort, indem Sie beide Moleküle mit der Skelettformel zeichnen und den Einfluss der induktiven Effekte ausführlich erklären. (3,5)


Frage 8: Aufklärung der Struktur eines Esters (2 + 1,5 + 1 = 4,5 Punkte)

Ein Laborant findet ganz unten im Schrank eine Flasche mit einem halb abgerissenen Etikett. Er kann nur noch erkennen, dass der Name auf "…säuremethylester" endet. Außerdem kann er noch die Summenformel $C_6H_{12}O_2$ ablesen.


a) Anhand dieser Informationen lässt sich die Zahl der möglichen Konstitutionsisomere auf 4 reduzieren. Zeichnen Sie die Halbstrukturformeln der 4 Konstitutionsisomere, die in Frage kommen. (2)

b) Durch einen Versuch zeigt sich, dass die Substanz die Ebene des polarisierten Lichtes nach links dreht. Erklären Sie, um welches der 4 Konstitutionsisomere es sich handeln muss. Benennen Sie das Konstitutionsisomer. (1,5)


c) Kommentieren Sie folgende Aussage des Laboranten: "Da der Ester das polarisierte Licht nach links dreht, muss es sich um das (S)-Enantiomer handeln." (1)

Frage 9: Alkalische Esterspaltung (4,5 Punkte)

Formulieren Sie den vollständigen Mechanismus (mit Halbstrukturformeln) der alkalischen Esterspaltung von Hexansäuremethylester und benennen Sie jede Etappe. Ein Benennen der Stoffe ist nicht nötig. Sie können R- benutzen, um einen Teil des Esters abzukürzen. (4,5)

	Наи	ıpt -		Das Periodensystem der Elemente gruppen															
	1 IA	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	18 VIIIA	
1	1,0 1 H																	4,0 2 He	1
2	6,9 3 Li	^{9,0} ₄ Be					Nebeng	grupper)				10,8 5 B	12,0 6 C	14,0 7 N	16,0 8 O	19,0 ₉ F	^{20,2} ₁₀ Ne	2
3	23,0 11 Na	^{24,3} ₁₂ Mg	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	27,0 13 Al	^{28,1} ₁₄ Si	31,0 15 P	32,1 16 S	35,5 17 Cl	39,9 18 Ar	3
4	39,1 19 K	^{40,1} ₂₀ Ca	45,0 21 S C	47,9 22 T i	50,9 23 V	52,0 24 Cr	54,9 25 Mn	55,8 26 Fe	58,9 27 Co	^{58,7} ₂₈ N i	63,5 29 C u	65,4 30 Zn	^{69,7} 31 Ga	^{72,6} ₃₂ Ge	74,9 33 As	^{79,0} ₃₄ Se	^{79,9} ₃₅ Br	83,8 36 K r	4
5	85,5 37 Rb	87,6 38 Sr	88,9 39 Y	91,2 40 Zr	92,9 41 Nb	95,9 42 Mo	99 43 T C	101,1 44 Ru	102,9 45 Rh	106,4 46 Pd	107,9 47 Ag	112,4 48 Cd	114,8 49 ln	118,7 50 Sn	121,8 51 Sb	^{127,6} ₅₂ Te	126,9 53	131,3 54 Xe	5
6	132,9 55 Cs	137,3 56 Ba	57 bis 71 La-Lu	178,5 72 Hf	180,9 73 Ta	183,8 74 W	186,2 75 Re	190,2 76 Os	192,2 77 r	^{195,1} ₇₈ Pt	197,0 79 Au	^{200,6} 80 Hg	204,4 81 TI	^{207,2} ₈₂ Pb	^{209,0} ₈₃ Bi	²⁰⁹ ₈₄ Po	210 85 At	222 86 Rn	6
7	223 87 Fr	226 88 Ra	89 bis 103 A C-Lr	261 104 Rf	262 105 Db	263 106 Sg	²⁶² ₁₀₇ Bh	²⁶⁵ ₁₀₈ Hs	268 109 M t	269 110 Uun	272 111 Uuu	277 112 Uub		289 114 Uuq		289 116 Uuh		293 118 Uuo	7
	Lar	nthand	oide	138,9 57 La	140,1 58 Ce	140,9 59 Pr	144,2 60 Nd	147 61 Pm	150,4 62 Sm	152,0 63 Eu	157,3 64 Gd	158,9 65 Tb	162,5 66 Dy	164,9 67 Ho	167,3 68 Er	168,9 69 Tm	173,0 70 Yb	175,0 71 Lu	
	A	ctinoid	de	227 89 Ac	232 90 Th	231 91 Pa	238 92 U	237 93 Np	244 94 Pu	243 95 Am	247 96 Cm	247 97 Bk	251 98 Cf	252 99 Es	257 100 Fm	258 ₁₀₁ Md	259 ₁₀₂ No	260 ₁₀₃ Lr	

Berechnungen von pH-Werten

Sehr starke Säuren, extrem starke Säuren

$$pH = -log(c(H_3O^+)) = -log(c_0(HA))$$

Schwache Säuren

$$pH = \frac{1}{2}pK_5 - \frac{1}{2}log(c_0(HA))$$

Starke Basen

pOH =
$$-\log(c(OH^{-})) = -\log(c_0(A^{-}))$$

pH = 14 - pOH = 14 + $\log(c_0(A^{-}))$

Schwache Basen

pOH =
$$\frac{1}{2}$$
 pK_B - $\frac{1}{2}$ log(c₀(A⁻))
pH = 14 - pOH = 14 - $\frac{1}{2}$ pK_B + $\frac{1}{2}$ log(c₀(A⁻))

Pufferlösungen

$$pH = pK_S + log(\frac{c_{A^-}}{c_{HA}}) = pK_S + log(\frac{n_{A^-}}{n_{HA}})$$

Indikatoren

Indikator	Farbe der Säure	pH-Bereich des Farbumschlags	Farbe der Base	PK_(Hin)
Thymolblau	rot	1,2- 2,8	gelb	1,7
Methylorange	rot	3,0-4,4	gelb-orange	3,4
Bromkresolgrün	gelb	3,8- 5,4	blau	4,7
Methylrot	rot	4,2- 6,2	gelb	5,0
Lackmus	rot	5,0- 8,0	blau	6,5
Bromthymolblau	gelb	6,0- 7,6	blau	7,1
Thymolblau	gelb	8,0 - 9,6	blau	8,9
Phenolphthalein	farblos	8,2-10,0	purpur	9,4
Thymolphthalein	farblos	9,3-10,5	blau	10,0
Alizaringelb R	gelb	10,1 -12,1	rot	11,2

Tabelle mit pK_S und pK_B Werten

p <i>K</i> ₅	Säure		korr	espondierende Base	p <i>K</i> _B
	Perchlorsäure	HClO ₄	ClO ₄ -	Perchlorat-Ion	
Pr	lodwasserstoffsäure	HI	1-	lodid-lon	Pro
Vollst	Bromwasserstoff	HBr	Br ⁻	Bromid-Ion	Ke
Vollständige Protonenabgabe	Salzsäure	HCl	Cl-	Chlorid-Ion	Keine Protonenaufnahme
e abe	Schwefelsäure	H ₂ SO ₄	HSO ₄ -	Hydrogensulfat-Ion	hme
	Salpetersäure	HNO ₃	NO ₃ -	Nitrat-Ion	
	Oxonium-lon	H ₃ O ⁺	H ₂ O	Wasser	
1,42	Oxalsäure	$H_2C_2O_4$	HC ₂ O ₄ -	Hydrogenoxalat-Ion	12,58
1,92	Hydrogensulfat-Ion	HSO ₄ -	SO ₄ ²⁻	Sulfat-Ion	12,08
2,13	Phosphorsäure	H_3PO_4	H ₂ PO ₄ -	Dihydrogenphosphat-Ion	11,87
2,22	Hexaaquaeisen(III)-Ion	$[Fe(H_2O)_6]^{3+}$	[Fe(OH)(H ₂ O) ₅] ²⁺	Pentaaquahxdroxyeisen(III)-lon	11,78
3,14	Flusssäure (Fluorwasserstoffsäure)	HF	F-	Fluorid-Ion	10,86
3,35	Salpetrige Säure	HNO ₂	NO ₂ -	Nitrit-Ion	10,65
3,75	Ameisensäure (Methansäure)	НСООН	HCOO-	Methanoat-Ion (Formiat)	10,25
4,75	Essigsäure (Ethansäure)	CH₃COOH	CH₃COO−	Ethanoat-Ion (Acetat)	9,25
4,85	Hexaaquaaluminium-lon	$[Al(H_2O)_6]^{3+}$	[Al(OH)(H ₂ O) ₅] ²⁺	Pentaaquahxdroxyaluminium-Ion	9,15
6,52	Kohlensäure	$CO_2 + H_2O$	HCO ₃ -	Hydrogencarbonat-Ion	7,48
6,92	Schwefelwasserstoff	H ₂ S	HS-	Hydrogensulfid-Ion	7,08
7,00	Hydrogensulfit-Ion	HSO ₃ -	SO ₃ ²⁻	Sulfit-Ion	7,00
7,20	Dihydrogenphosphat-lon	$H_2PO_4^-$	HPO ₄ ²⁻	Hydrogenphosphat-lon	6,80
9,25	Ammonium-lon	NH ₄ ⁺	NH ₃	Ammoniak	4,75
9,40	Blausäure (Cyanwasserstoff)	HCN	CN-	Cyanid-lon	4,60
10,40	Hydrogencarbonat-lon	HCO ₃ -	CO ₃ ²⁻	Carbonat-Ion	3,60
11,62	Wasserstoffperoxid	H_2O_2	HO ₂ -	Hydrogenperoxid-lon	3,38
12,36	Hydrogenphosphat-Ion	HPO ₄ ²⁻	PO ₄ 3-	Phosphat-Ion	1,64
13,00	Hydrogensulfid-Ion	HS-	S ²⁻	Sulfid-Ion	1,00
	Wasser	H_2O	OH-	Hydroxid-lon	
	Ethanol	CH ₃ CH ₂ OH	CH ₃ CH ₂ O ⁻	Ethanolat-Ion	
Proto	Methanol	CH₃OH	CH ₃ O-	Methanolat-Ion	Vollständige Protonenaufnahme
Keine Protonenabgabe	Ammoniak	NH ₃	NH ₂ -	Amid-lon	Vollständige tonenaufnah
)) Jgabe	Hydroxid-lon	0H-	O ²⁻	Oxid-lon	lige
	Wasserstoff	H ₂	H-	Hydrid-Ion	e

Standardpotenziale bei 25 °C

Red	=	Ox + n e⁻	<i>E⊖</i> / V
Li(s)	· =	Li ⁺ (aq) + e ⁻	-3,02
K(s)	\rightleftharpoons	K ⁺ (aq) + e ⁻	-2,92
Ba(s)	=	Ba ²⁺ (aq) + 2 e ⁻	-2,90
Ca(s)	=	Ca ²⁺ (aq) + 2 e ⁻	-2,76
Na(s)	\rightleftharpoons	Na ⁺ (aq) + e ⁻	-2,71
Mg(s)	\rightleftharpoons	Mg ²⁺ (aq) + 2 e [−]	-2,38
Al(s)	=	Al ³⁺ (aq) + 3 e ⁻	-1,66
$N_2H_4(aq) + 4 OH^-(aq)$	\rightleftharpoons	$N_2(g) + 4 H_2O(1) + 4 e^-$	-1,16
$SO_3^{2-}(aq) + 2 OH^{-}(aq)$	\rightleftharpoons	$SO_4^{2-}(aq) + H_2O(1) + 2 e^-$	-0,92
$H_2(g) + 2 OH^-(aq)$	\rightleftharpoons	$2 H_2O(1) + 2 e^-$	-0,83
Zn(s)	\rightleftharpoons	Zn ²⁺ (aq) + 2 e ⁻	-0,76
Fe(s)	\rightleftharpoons	Fe ²⁺ (aq) + 2 e ⁻	-0,41
Cd(s)	\rightleftharpoons	Cd ²⁺ (aq) + 2 e ⁻	-0,40
Pb(s) + SO ₄ ²⁻ (aq)	\rightleftharpoons	PbSO ₄ (s) + 2 e ⁻	-0,36
Ni(s)	\rightleftharpoons	Ni ²⁺ (aq) + 2 e ⁻	-0,23
$H_2O_2(aq) + 2 OH^-(aq)$	=	$O_2(g) + 2 H_2O(I) + 2 e^-$	-0,15
Ag(s) + I ⁻ (aq)	\rightleftharpoons	Agl(s) + e ⁻	-0,15
Sn(s)	\rightleftharpoons	Sn ²⁺ (aq) + 2 e ⁻	-0,14
Pb(s)	\rightleftharpoons	Pb ²⁺ (aq) + 2 e ⁻	-0,13
Fe(s)	\rightleftharpoons	Fe ³⁺ (aq) + 3 e ⁻	-0,04
$H_2(g) + 2 H_2O(I)$	\rightleftharpoons	2 H₃O⁺(aq) + 2 e⁻	0
$Ag(s) + Br^{-}(aq)$	\rightleftharpoons	AgBr(s) + e^-	0,07
$H_2S(g) + 2 H_2O(I)$	=	$S(s) + 2 H_3O^+(aq) + 2 e^-$	0,14
Cu ⁺ (aq)	\rightleftharpoons	Cu ²⁺ (aq) + e ⁻	0,16
$H_2SO_3(aq) + 5 H_2O(I)$	\rightleftharpoons	SO ₄ ²⁻ (aq) + 4 H ₃ O ⁺ (aq) + 2 e ⁻	0,20
Ag(s) + Cl ⁻ (aq)	\rightleftharpoons	$AgCl(s) + e^{-}$	0,22
2 Hg(l) + 2 Cl ⁻ (aq)	=	$Hg_2Cl_2(s) + 2 e^-$	0,27
2 Ag(s) + 2 OH ⁻ (aq)	\rightleftharpoons	$Ag_2O(s) + H_2O(l) + 2 e^{-}$	0,34
Cu(s)	\rightleftharpoons	$Cu^{2+}(aq) + 2e^{-}$	0,34
4 OH ⁻ (aq)	\rightleftharpoons	$O_2(g) + 2 H_2O(l) + 4 e^-$	0,40
$Cl_2(g) + 4 OH^-(aq)$	\rightleftharpoons	2 OCl⁻(aq) + 2 H₂O(l) + 2e⁻	0,42
Cu(s)	=	Cu ⁺ (aq) + e ⁻	0,52
2 l ⁻ (aq)	=	$l_2(s) + 2e^{-s}$	0,54
$MnO_2(s) + 4 OH^-(aq)$,	$MnO_4^-(aq) + 2 H_2O(I) + 3 e^-$	0,59
$H_2O_2(aq) + 2 H_2O(l)$	<i>,</i>	$O_2(g) + 2 H_3O^+(aq) + 2 e^-$	0,68
Fe ²⁺ (aq)	,	$Fe^{3+}(aq) + e^{-}$	0,77
Ag(s)	,	$Ag^{+}(aq) + e^{-}$	0,80
2 Hg(l)	→	$Hg_2^{2+}(aq) + 2e^{-}$	0,80
Hg(I)	≓ ≠	$Hg^{2+}(aq) + 2e^{-}$	0,85 0,96
$NO(g) + 6 H_2O(I)$	+	$NO_3^-(aq) + 4 H_3O^+(aq) + 3 e^-$	1,07
2 Br [–] (aq) Pt(s)	#	$Br_2(aq) + 2 e^-$ $Pt^{2+}(aq) + 2 e^-$	1,07
$I_2(s) + 18 H_2O(l)$	+	2 IO ₃ ⁻ (aq) + 12 H ₃ O ⁺ (aq) + 10 e ⁻	1,20
$Mn^{2+}(aq) + 6 H_2O(l)$	+	$MnO_2(s) + 4 H_3O^+(aq) + 2 e^-$	1,20
6 H ₂ O(I)	+	$O_2(g) + 4 H_3O^+(aq) + 4 e^-$	1,23
2 Cr ³⁺ (aq) + 21 H ₂ O(I)	+	$Cr_2O_7^{2-}(aq) + 14 H_3O^+(aq) + 6 e^-$	1,33
2 Cl ⁻ (aq)	=	$Cl_2(g) + 2 e^-$	1,36
Au(s)	, =	$Au^{3+}(aq) + 3 e^{-}$	1,42
$Pb^{2+}(aq) + 6 H_2O(I)$	+	PbO ₂ (s) + 4 H ₃ O ⁺ (aq) + 2 e ⁻	1,46
$Mn^{2+}(aq) + 12 H_2O(I)$	=	$MnO_4^-(aq) + 8 H_3O^+(aq) + 5 e^-$	1,49
$MnO_2(s) + 6 H_2O(l)$	<u>`</u>	$MnO_4^-(aq) + 4 H_3O^+(aq) + 3 e^-$	1,68
$PbSO_4(s) + 5 H_2O(l)$	<u>`</u>	$PbO_2(s) + HSO_4^-(aq) + 3 H_3O^+(aq) + 2 e^-$	1,69
4 H ₂ O(I)	÷	$H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^-$	1,78
2 SO ₄ ²⁻ (aq)	,	$S_2O_8^{2-}(aq) + 2e^-$	2,00
2 F ⁻ (aq)	=	$F_2(g) + 2 e^-$	2,87
,		.5.	, -

Organische Chemie

Prioritätenliste und Benennung der Verbindungen

Prioritätenliste										
Verbindungsklasse	Vorsilbe	Endung								
Carbonsäure	carboxy	säure								
Ester		säureester								
Aldehyd	formyl	al								
Keton	охо	on								
Alkohol	hydroxy	ol								
Amin	amino	amin								
Alken		en								
Halogen	halogen									