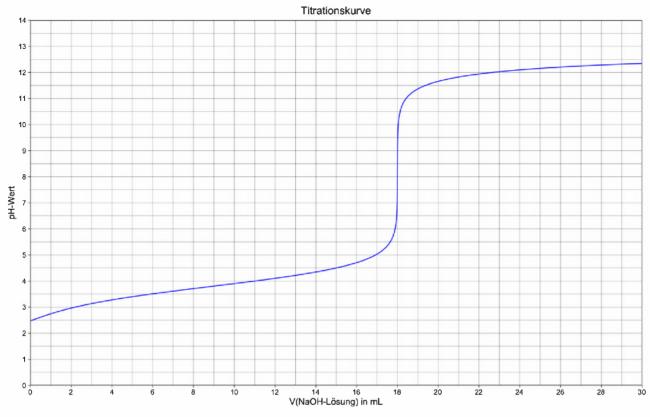
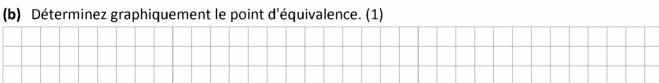
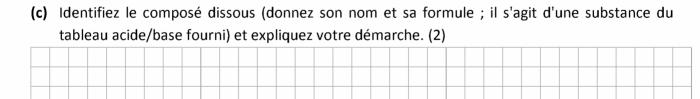
EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 – QUESTIONNAIRE ÉCRIT										
Date :	17	7.05.23	.23 <i>Durée :</i> 08:15			Numéro candidat :				
Discipline :				Section(s):						
		Chimie				GSN				

Remarque générale : il n'y a qu'une seule réponse correcte pour les questions à choix multiples.

(multiple choice questions)

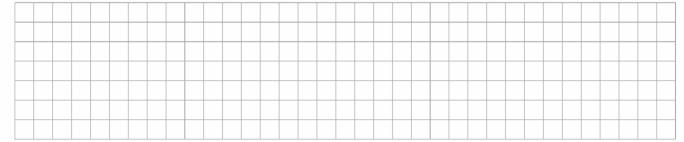

I. Réactions acide base (9 + 8 = 17 points)


Question 1 – titrage (9 points)


Vous avez trouvé au laboratoire une solution non étiquetée qui doit être un acide ou une base dilué(e). Vous décidez de verser une petite quantité de la solution dans un tube à essai à l'aide d'une pipette afin de déterminer son caractère acide ou basique : Après avoir ajouté 5 gouttes de solution indicatrice de bleu de bromothymol et avoir agité le mélange, celui-ci prend une couleur jaune.

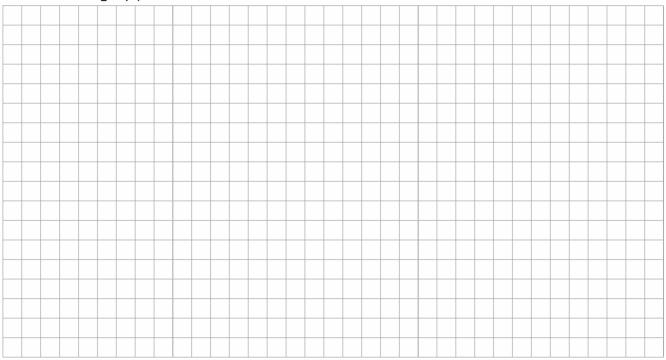
(a)	Quelle affirmation est correcte ? (1)
	A La solution inconnue est neutre.
	B La solution inconnue possède un pOH supérieur à 7.
	C L'indicateur bleu de bromothymol ne permet pas de savoir s'il s'agit d'un acide ou d'une base.
	D La solution inconnue a un pH supérieur à 7.

Vous décidez d'analyser quantitativement la solution : Pour cela, vous utilisez comme solution titrée de la soude caustique de concentration $c=0.10\ mol\cdot L^{-1}$. Vous prélevez à cet effet $24\ mL$ de la solution d'échantillon. Après exécution, vous obtenez la courbe de titrage suivante :

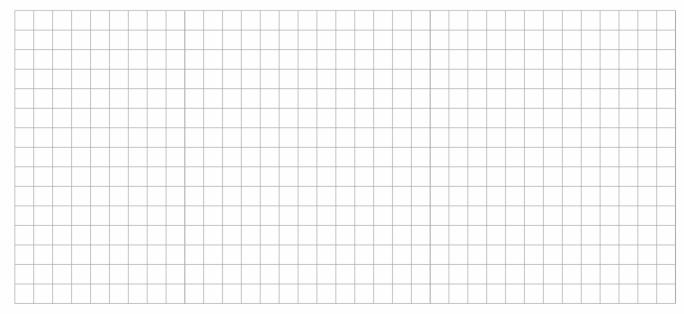

(d) Calculez la concentration molaire de la solution d'échantillon avant le titrage et le pH de la solution de soude caustique. (2)

(e) Calculez le pH au point d'équivalence. (2)

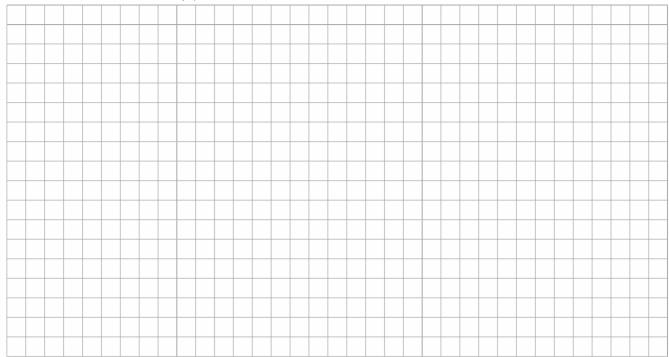
(f) Indiquez un indicateur coloré approprié pour ce titrage. Justifiez votre réponse. (1)



Question 2 – Calcul du pH de solutions de mélanges (8 points)

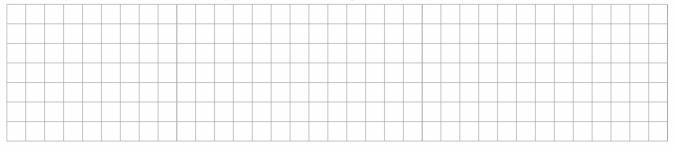

Donnez à chaque fois l'équation et dressez un tableau avec les quantités de substances des réactifs et des produits, avant et après le mélange.

Calculez ensuite le pH de la solution.


(a) Dans une fiole jaugée de 250 mL, mélanger 25 mL d'acide bromhydrique $c=0.20\ mol\cdot L^{-1}$ et 72 mg d'hydroxyde de lithium. On complète ensuite avec de l'eau distillée jusqu'à la marque d'étalonnage. (3)

(b) 500 mL de solution contiennent 27,24 g d'hydrogénosulfate de potassium et 35,53 g de sulfate de sodium. (2)

(c) Dans une solution tampon préparée à partir de 250 mL d'acide acétique ($c=0.60\ mol\cdot L^{-1}$ et de 106,73 g d'acétate de magnésium, on ajoute 300 mL d'acide chlorhydrique $c=3.00\ mol\cdot L^{-1}$. (3)



II. Électrochimie (5 + 3 = 8 points)

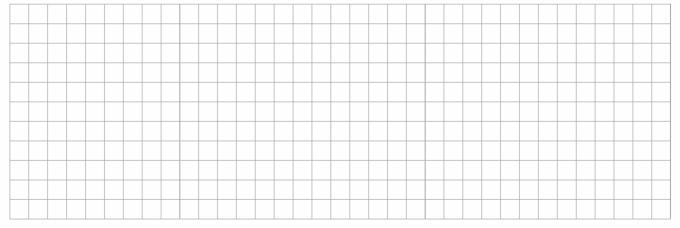
Question 3 – Élément galvanique (5 points)

Dans un demi-élément, une électrode en étain est immergée dans une solution de chlorure d'étain (II) $c=1\frac{mol}{L}$, dans l'autre une électrode en graphite en phase aqueuse est entourée de gaz dichlore (p = 1 bar). Les deux demi-éléments sont séparés par un diaphragme.

(a) Indiquez la notation symbolique de cet élément galvanique. (1)

(b) Indiquez l'anode et la cathode, le pôle positif et le pôle négatif, les agents réducteur et oxydant, les réactions aux électrodes et la réaction globale. (3)

(c) Calculez la tension de cellule de cet élément galvanique. (1)

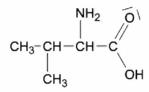

Question 4 – Le procédé chlore-alcali (3 points)

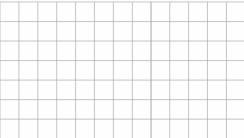
Depuis la fin du 19e siècle, le procédé chlore-alcali permet de produire à grande échelle les principaux produits chimiques de base que sont le dichlore, le dihydrogène et la potasse caustique à partir de chlorure de potassium et d'eau. Dans l'une des demi-cellules, une électrode est plongée dans une solution de chlorure de potassium et du gaz dichlore se forme sur l'électrode lorsque le courant est activé. Dans l'autre demi-cellule se trouve une électrode qui est simplement immergée dans l'eau. Sur cette électrode, du gaz dihydrogène se forme lorsque le courant passe et l'eau devient de plus en plus basique - il se forme de la potasse caustique.

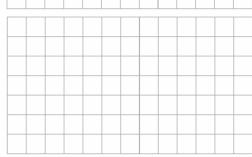
(a) Donnez les équations partielles de l'oxydation et de la réduction. Identifiez l'anode et la cathode ainsi que leur polarité. (2)

(b) Établissez l'équation globale de l'électrolyse. (1)

III. Chimie organique (10 + 11 + 14 = 35 points)

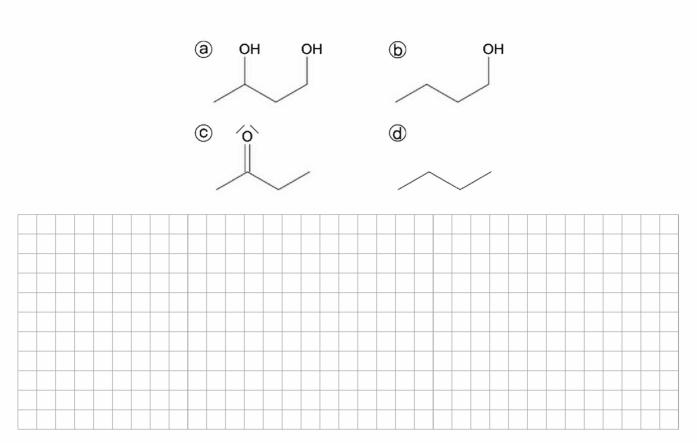

Question 5 – Dénominations selon la nomenclature IUPAC et points d'ébullition (10 points)


(a) Nommez les molécules suivantes par leur nom IUPAC complet. (1,5)


i.

$$\begin{array}{c|c} \mathsf{CH_3} & \mathsf{OH} \\ | & | \\ \mathsf{CH_3-C---} \mathsf{CH} \!=\! \mathsf{CH} \!-\! \mathsf{CH} \!-\! \mathsf{CH}_3 \\ | & | \\ \mathsf{CH_3} \end{array}$$

ii.


(b) Dessinez la formule de constitution squelettique des molécules suivantes. (1,5)

i. ester 2-méthylpropanoate de butyle

ii. pent-4-én-2-ol

(c)	Dessinez la formule de constitution semi-développée des molécules suivantes. (1,5)									
	i.	2-méthylpropanal								
	ii.	ester 4-oxopentanoate de méthyle								
(d)	Dessinez	la formule de <i>Cram</i> des molécules suivantes et indiquez les priorités. (2,5)								
	i.	(R)-1-bromopentan-3-ol								
	••	. 1 (0) 2 1 1 "								
	ii.	acide (S)-3-hydroxypentanoïque								

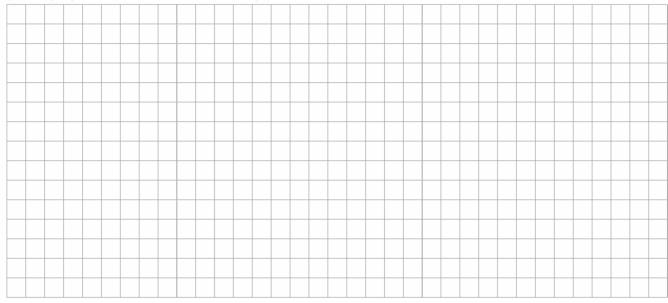
(e) Classez les composés suivants par ordre croissant de point d'ébullition. Justifiez l'ordre en citant à chaque fois les interactions prioritaires. (3)

Question 6 - Oxydation des alcools (4 + 4,5 + 2,5 = 11 points)

(a) Dessinez les formules de constitution semi-développées des quatre isomères de constitution des alcools de formule moléculaire C₄H₁₀O. Nommez les alcools selon la nomenclature IUPAC. Indiquez si ces alcools sont des alcools primaires, secondaires ou tertiaires. (4)

(b) Choisissez un alcool primaire, un alcool secondaire et un alcool tertiaire parmi les alcools dessinés sous (a). Etablissez pour ces trois alcools (si possible) les équations de réaction avec CuO. Indiquez à chaque fois les nombres d'oxydation pertinents et nommez le produit organique correspondant selon la nomenclature IUPAC. (4,5)

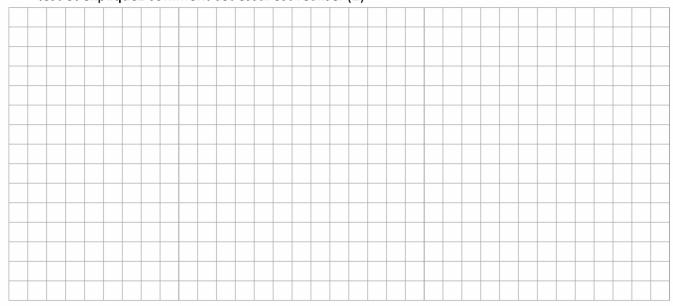
(c) Un des produits formés en (b) peut être mis en évidence avec le test de Tollens. Établissez l'équation redox correspondante (y compris les équations partielles de l'oxydation et de la réduction). (2,5)

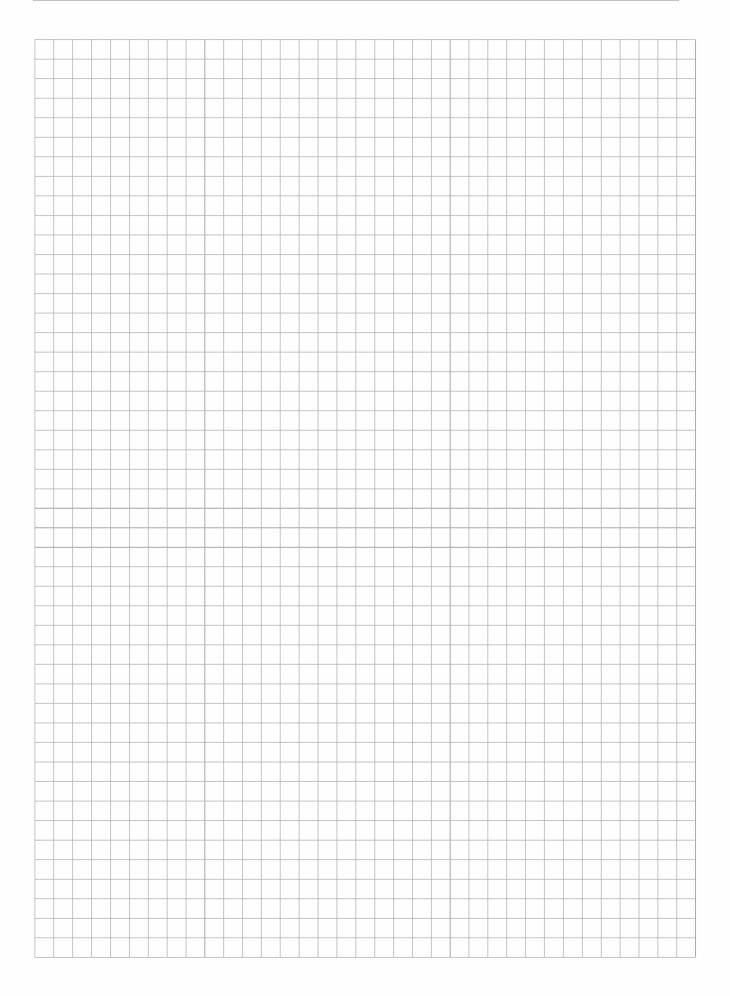

Question 7 – Réaction de l'eau de brome avec l'hexane (3 + 7 + 1 + 1 + 2 = 14 points)

La réaction entre l'eau de brome et l'hexane est réalisée dans un tube à essai qui est exposé pendant plusieurs minutes à une forte lumière UV.

Après cette irradiation, les observations suivantes sont à noter :

- 1. La phase aqueuse s'est presque entièrement décolorée.
- 2. Un papier indicateur universel humide, que l'on tient au-dessus de l'ouverture du tube à essai, se colore en rouge.


(b) Établissez le mécanisme complet de la réaction (avec les formules de constitution squelettiques, y compris les flèches) pour la réaction effectuée à la question 7 et nommez les étapes de la réaction. Indiquez également le nom de ce type de réaction ! (7)



(c)	Quelle af	ffirmation est correcte ? (1)									
	Par l'expo	osition à la lumière ultraviolette									
	A	une dissociation hétérolytique a lieu.									
	В	une activation de la double liaison a lieu.									
	□ c	une polarisation de la liaison Br-Br a lieu.									
	D	une dissociation homolytique a lieu.									
(d)	Quelle af	Quelle affirmation est correcte ? (1)									
	La photol	hotohalogénation est									
	□ A□ B	un type de réaction très spécifique, où un seul produit est produit. un type de réaction qui ne se produit qu'avec la lumière UV artificielle.									
	□ c	un type de réaction non spécifique qui peut produire de nombreux									
		halogénoalcanes différents, ainsi que des di- ou tribromoalcanes.									
	D	une réaction d'addition, car on ajoute du dibrome à un alcane.									

(e) Le bromoalcane formé peut être détecté au moyen d'un test de mise en évidence. Nommez cet test et expliquez comment cet essai est réalisé. (2)

Liste avec des indicateurs colorés

indicateur coloré	forme acide	zone de virage	forme basique	$pK_a(HIn)$
bleu de thymol	rouge	1,2 - 2,8	jaune	1,7
orange de méthyle	orange	3,1 – 4,4	jaune	3,4
vert de bromocrésol	jaune	3,8 – 5,4	bleu	4,7
rouge de méthyle	rouge	4,2 – 6,3	jaune	5,0
bleu de bromothymol	jaune	6,0 – 7,7	bleu	7,1
bleu de thymol	jaune	8,0 – 9,6	bleu	8,9
phénolphtaléine	incolore	8,2 – 10	rouge	9,4
thymolphtaléine	incolore	9,3 - 10,5	bleu	10,0
jaune d'alizarine R	jaune	10,1 – 12,1	rouge	11,2

Formules pour le calcul du pH

Acides forts HA

$$pH = -log[H3O+] = -log[HA]0$$

Acides faibles HA

$$pH = \frac{1}{2} (pK_A - log[HA]_0)$$

Bases fortes A-

$$pOH = -log[OH^{-}] = -log[A^{-}]_{0}$$

 $pH = 14 - pOH = 14 + log[A^{-}]_{0}$

Bases faibles A⁻
pOH =
$$\frac{1}{2}$$
 (pK_B - log[A⁻]₀)
pH = 14 - pOH = 14 - $\frac{1}{2}$ (pK_B - log[A⁻]₀)

Solutions tampon
$$pH = pK_A + log \frac{[A^-]}{[HA]} = pK_A + log \frac{n(A^-)}{n(HA)}$$

Table avec les pK_A et pK_B en solution aqueuse à 25 °C

p <i>K</i> _A	acide		ba	base correspondante				
Pr	acide perchlorique	ide perchlorique HClO ₄		ion perchlorate	Ъ			
otol	acide iodhydrique	НІ	[-	ion iodure	ncn			
lyse	acide bromhydrique	HBr	Br⁻	ion bromure	ine i			
con	acide chlorhydrique	HCl	CI ⁻	ion chlorure	orot			
Protolyse complète	acide sulfurique	H ₂ SO ₄	HSO ₄ -	ion hydrogénosulfate	Aucune protolyse			
te	acide nitrique	HNO ₃	NO ₃ -	ion nitrate	ñ			
	ion oxonium	H₃O⁺	H ₂ O	eau				
1,42	acide oxalique	H ₂ C ₂ O ₄	HC ₂ O ₄ ⁻	ion hydrogénooxalate	12,58			
1,92	ion hydrogénosulfate	HSO ₄ -	SO ₄ ²⁻	ion sulfate	12,08			
2,13	acide phosphorique	H ₃ PO ₄	H ₂ PO ₄ ⁻	ion dihydrogénophosphate	11,87			
2,22	ion hexaaqua fer(III)	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	ion pentaaqua hydroxo fer(III)	11,78			
3,14	acide fluorhydrique	HF	F-	ion fluorure	10,86			
3,35	acide nitreux	HNO ₂	NO ₂ -	ion nitrite	10,65			
3,75	acide formique (acide méthanoïque)	нсоон	HCOO-	ion méthanoate (formiate)	10,25			
4,75	acide acétique (acide éthanoïque)	CH₃COOH	CH₃COO⁻	ion éthanoate (acétate)	9,25			
4,85	ion hexaaqua aluminium	[Al(H ₂ O) ₆] ³⁺	[Al(OH)(H ₂ O) ₅] ²⁺	ion pentaaqua hydroxo aluminium	9,15			
6,52	acide carbonique	H ₂ CO ₃	HCO ₃ ⁻	ion hydrogénocarbonate	7,48			
6,92	acide sulfhydrique sulfure d'hydrogène	H ₂ S	HS ⁻	ion hydrogénosulfure	7,08			
7,00	ion hydrogénosulfite	HSO ₃ ⁻	SO ₃ ²⁻	ion sulfite	7,00			
7,20	ion dihydrogénophosphate	H ₂ PO ₄ ⁻	HPO ₄ ²⁻	ion hydrogénophosphate	6,80			
9,25	ion ammonium	NH_4^+	NH ₃	ammoniaque	4,75			
9,40	acide cyanhydrique cyanure d'hydrogène	HCN	CN-	ion cyanure	4,60			
10,40	ion hydrogénocarbonate	HCO ₃ -	CO ₃ ²⁻	ion carbonate	3,60			
11,62	peroxyde d'hydrogène	H ₂ O ₂	HO ₂ -	ion peroxyde d'hydrogène	3,38			
12,36	ion hydrogénophosphate	HPO ₄ ²⁻	PO ₄ 3-	ion phosphate	1,64			
13,00	ion hydrogénosulfure	HS ⁻	S ²⁻	ion sulfure	1,00			
	eau	H ₂ O	OH-	ion hydroxyde				
Þ	éthanol	CH₃CH₂OH	CH ₃ CH ₂ O⁻	ion éthanolate	Prc			
unor	méthanol	CH₃OH	CH₃O⁻	ion méthanolate	otoly			
le pi	ammoniaque	NH ₃	NH ₂ -	ion amide	/se c			
Aucune protolyse	ion hydroxyde	OH-	O ²⁻	ion oxyde	Protolyse complète			
lyse	hydrogène	H ₂	H-	ion hydrure	olètı ⊣			
	inyan ogene	' '2	11	Ton Hydraic	ന			

Potentiels standard à 25 °C

Red	=	Ox + n e ⁻	E [⊕] / V
2 F ⁻ (aq)	, ,	$F_2(g) + 2 e^-$	+2,87
2 SO ₄ ²⁻ (aq)	≠	$S_2O_8^{2-}(aq) + 2 e^-$	+2,00
4 H ₂ O(I)	=	$H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^-$	+1,78
$PbSO_4(s) + 5 H_2O(l)$	=	$PbO_2(s) + HSO_4^-(aq) + 3 H_3O^+(aq) + 2 e^-$	+1,69
$MnO_2(s) + 6 H_2O(l)$	\rightleftharpoons	$MnO_4^-(aq) + 4 H_3O^+(aq) + 3 e^-$	+1,68
$Mn^{2+}(aq) + 12 H_2O(I)$	=	$MnO_4^-(aq) + 8 H_3O^+(aq) + 5 e^-$	+1,49
$Pb^{2+}(aq) + 6 H_2O(I)$	=	$PbO_2(s) + 4 H_3O^+(aq) + 2 e^-$	+1,46
Au(s)	\rightleftharpoons	$Au^{3+}(aq) + 3e^{-}$	+1,42
2 Cl ⁻ (aq)	\rightleftharpoons	Cl ₂ (g) + 2 e ⁻	+1,36
2 Cr ³⁺ (aq) + 21 H ₂ O(I)	\rightleftharpoons	$Cr_2O_7^{2-}(aq) + 14 H_3O^+(aq) + 6 e^-$	+1,33
6 H ₂ O(I)	=	$O_2(g) + 4 H_3O^+(aq) + 4 e^-$	+1,23
$Mn^{2+}(aq) + 6 H_2O(I)$	=	$MnO_2(s) + 4 H_3O^+(aq) + 2 e^-$	+1,21
Pt(s)	\rightleftharpoons	Pt ²⁺ (aq) + 2 e ⁻	+1,20
$I_2(s) + 18 H_2O(I)$	=	2 IO ₃ ⁻ (aq) + 12 H ₃ O ⁺ (aq) + 10 e ⁻	+1,20
2 Br ⁻ (aq)	\rightleftharpoons	Br ₂ (aq) + 2 e ⁻	+1,07
NO(g) + 6 H2O(I)	\rightleftharpoons	$NO_3^-(aq) + 4 H_3O^+(aq) + 3 e^-$	+0,96
Hg(I)	\rightleftharpoons	Hg ²⁺ (aq) + 2 e ⁻	+0,85
Ag(s)	\rightleftharpoons	Ag ⁺ (aq) + e ⁻	+0,80
2 Hg(I)	\rightleftharpoons	$Hg_2^{2+}(aq) + 2 e^-$	+0,80
Fe ²⁺ (aq)	\rightleftharpoons	Fe ³⁺ (aq) + e ⁻	+0,77
$H_2O_2(aq) + 2 H_2O(I)$	=	$O_2(g) + 2 H_3O^+(aq) + 2 e^-$	+0,68
$MnO_2(s) + 4 OH^-(aq)$	=	$MnO_4^-(aq) + 2 H_2O(l) + 3 e^-$	+0,59
2 I⁻(aq)	\rightleftharpoons	$I_2(s) + 2 e^-$	+0,54
Cu(s)	\rightleftharpoons	Cu ⁺ (aq) + e ⁻	+0,52
$Cl_2(g) + 4 OH^-(aq)$	\rightleftharpoons	2 OCl ⁻ (aq) + 2 H ₂ O(l) + 2e ⁻	+0,42
4 OH⁻(aq)	\rightleftharpoons	$O_2(g) + 2 H_2O(I) + 4 e^-$	+0,40
2 Ag(s) + 2 OH⁻(aq)	\rightleftharpoons	$Ag_2O(s) + H_2O(l) + 2 e^-$	+0,34
Cu(s)	\rightleftharpoons	Cu ²⁺ (aq) + 2 e ⁻	+0,34
2 Hg(I) + 2 Cl ⁻ (aq)	\rightleftharpoons	$Hg_2Cl_2(s) + 2 e^-$	+0,27
$Ag(s) + CI^{-}(aq)$	\rightleftharpoons	$AgCl(s) + e^{-}$	+0,22
$H_2SO_3(aq) + 5 H_2O(I)$	\rightleftharpoons	$SO_4^{2-}(aq) + 4 H_3O^+(aq) + 2 e^-$	+0,20
Cu ⁺ (aq)	=	$Cu^{2+}(aq) + e^{-}$	+0,16
$H_2S(g) + 2 H_2O(I)$	=	$S(s) + 2 H_3O^+(aq) + 2 e^-$	+0,14
$Ag(s) + Br^{-}(aq)$	\rightleftharpoons	$AgBr(s) + e^{-}$	+0,07
$H_2(g) + 2 H_2O(I)$	\rightleftharpoons	2 H ₃ O ⁺ (aq) + 2 e ⁻	+0,00
Fe(s)	\rightleftharpoons	Fe ³⁺ (aq) + 3 e ⁻	-0,04
Pb(s)	\rightleftharpoons	Pb ²⁺ (aq) + 2 e ⁻	-0,13
Sn(s)	=	Sn ²⁺ (aq) + 2 e ⁻	-0,14
$H_2O_2(aq) + 2 OH^-(aq)$	\rightleftharpoons	$O_2(g) + 2 H_2O(I) + 2 e^-$	-0,15
$Ag(s) + I^{-}(aq)$	\rightleftharpoons	AgI(s) + e ⁻	-0,15
Ni(s)	\rightleftharpoons	Ni ²⁺ (aq) + 2 e ⁻	-0,23
$Pb(s) + SO_4^{2-}(aq)$	\rightleftharpoons	PbSO ₄ (s) + 2 e ⁻	-0,36
Cd(s)	\rightleftharpoons	$Cd^{2+}(aq) + 2 e^{-}$	-0,40
Fe(s)	\rightleftharpoons	$Fe^{2+}(aq) + 2 e^{-}$	-0,41
Zn(s)	\rightleftharpoons	Zn ²⁺ (aq) + 2 e ⁻	-0,76
$H_2(g) + 2 OH^-(aq)$	\rightleftharpoons	2 H ₂ O(I) + 2 e ⁻	-0,83
$SO_3^{2-}(aq) + 2 OH^{-}(aq)$	=	$SO_4^{2-}(aq) + H_2O(l) + 2 e^-$	-0,92
$N_2H_4(aq) + 4 OH^-(aq)$	\rightleftharpoons	$N_2(g) + 4 H_2O(I) + 4 e^-$	-1,16
Al(s)	\rightleftharpoons	Al ³⁺ (aq) + 3 e ⁻	-1,66
Mg(s)	\rightleftharpoons	$Mg^{2+}(aq) + 2 e^{-}$	-2,38
Na(s)	=	Na ⁺ (aq) + e ⁻	-2,71
Ca(s)	\rightleftharpoons	$Ca^{2+}(aq) + 2e^{-}$	-2,76
Ba(s)	\rightleftharpoons	Ba ²⁺ (aq) + 2 e ⁻	-2,90
K(s)	=	K ⁺ (aq) + e ⁻	-2,92
Li(s)	\rightleftharpoons	Li ⁺ (aq) + e ⁻	-3,02

Tableau périodique des éléments chimiques

1	IΑ															VIII A	2
Н																	Не
1,0079	II A											III A	IV A	VA	VI A	VII A	4,0026
3	4											5	6	7	8	9	10
Li	Be											В	Č	Ň	o	F	Ne
1.71	ВС													11		. A	110
6,941	9,01218											10,81	12,011	14,0067	15,9994	18,9984	20,179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
2,98977	24,305	III B	IV B	VВ	VI B	VII B	VIII B	VIII B	VIII B	ΙB	II B	26,98154	28,086	30,97376	32,06	35,453	39,948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,098	40,08	44,9559	47,9	50,9414	51,996	54,938	55,847	58,9332	58,71	63,546	65,38	69,72	72,59	74,9216	78,96	79,904	83,8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85,4578	87,62	88,9059	91,22	92,9064	95,94	98,9062	101,07	102,9055	106,4	107,868	112,4	114,82	118,69	121,75	127,6	126,9045	131,3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132,9054	137,34	138,9055	178,49	180,9479	183,85	186,2	190,2	192,22	195,09	196,9665	200,59	204,37	207,2	208,9804	209	210	222
87	88	89	104	105	106	107	108	109	150,05	150,5000	200,00	201,57	207,2	200,2001		-10	
Fr	Ra	Ac	§	§	§	§	§	§									
223	226,0254	227,03	261	262	263	262	265	267	_								
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				140,12	140,9077	144,24	145	150,4	151,96	157,25	158,9254	162,5	164,9304	197,26	168,9342	173,04	174,97
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				232,0381	231,0359	238,029	237,0482	244	243	247	249	251	254	257	258	259	260

Nomenclature organique : Liste de priorité des fonctions

fonction	suffixe	préfixe		
acide carboxylique	acideoïque	carboxy		
ester	oate d'yle			
aldéhyde	al	oxo		
cétone	one	oxo		
alcool	ol	hydroxy		
amine	amine	amino		
alcène	ène			
halogène	/	halogéno		