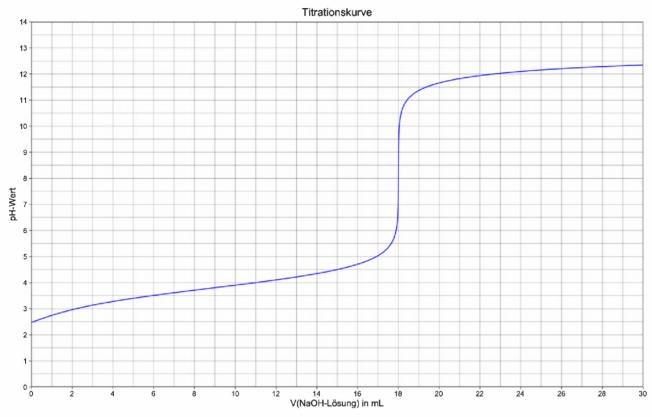
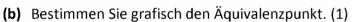
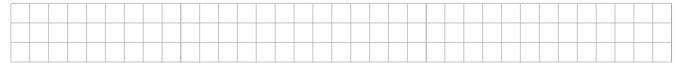
EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 – QUESTIONNAIRE ÉCRIT								
Date :	17.0	05.23	Durée :	08:15 - 10:45		Numéro candidat :		
Discipline :		Chimie		Section(s) :		GSN		

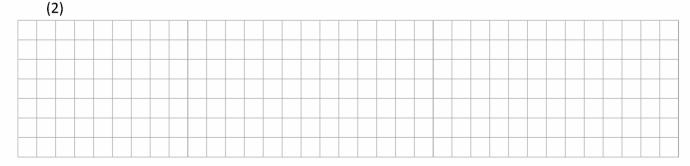
Allgemeine Bemerkung: es gibt immer nur eine einzige richtige Antwort bei den Fragen mit
Mehrfachantworten (Multiple choice questions)

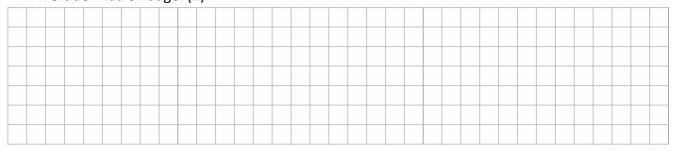

I. <u>Säure-Base-Reaktionen (9 + 8 = 17 Punkte)</u>


Frage 1 – Titration (9 Punkte)


Sie haben im Labor eine unbeschriftete Lösung gefunden, bei welcher es sich um eine verdünnte Säure oder Base handeln muss. Sie beschließen mit einer Pipette eine kleine Menge der Lösung in ein Reagenzglas zu geben, um diese auf ihren sauren resp. basischen Charakter hinzuuntersuchen: Nach Zugabe von 5 Tropfen Bromthymolblau-Indikatorlösung und Umschütteln weist das Gemisch eine gelbe Farbe auf.

(a)	Welche Aussage ist korrekt? (1)							
	A	Die unbekannte Lösung ist neutral.						
	В	Die unbekannte Lösung besitzt einen pOH-Wert größer als 7.						
	□ c	Bromthymolblau-Indikator ist ungeeignet, um zu erkennen, ob es sich um eine						
		Säure oder Base handelt.						
	\Box D	Die unbekannte Lösung besitzt einen pH-Wert größer als 7.						


Sie beschließen die Lösung quantitativ zu analysieren: Hierzu verwenden Sie in einer Titration als Maßlösung Natronlauge der Stoffmengenkonzentration $c=0,10\ mol\cdot L^{-1}$. Von der Probelösung entnehmen Sie hierzu $24\ mL$. Nach Durchführung erhalten Sie folgende Titrationskurve:

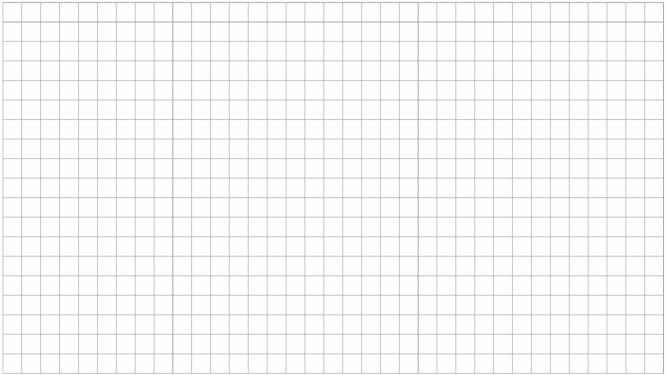


(c) Identifizieren Sie die gelöste Substanz (Name und Formel angeben; es handelt sich um eine Substanz aus der bereitgestellten Säure/Base-Tabelle) und erklären Sie Ihre Vorgehensweise.

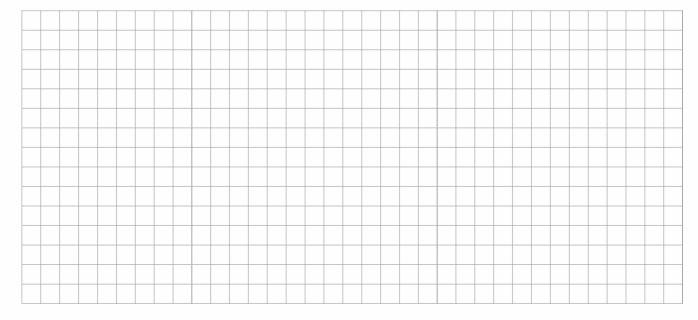
(d) Berechnen Sie die Stoffmengenkonzentration der Probelösung vor der Titration und den pH-Wert der Natronlauge. (2)

(e) Berechnen Sie den pH-Wert am Äquivalenzpunkt. (2)

(f) Geben Sie einen geeigneten Farbindikator für diese Titration an. Begründen Sie Ihre Antwort. (1)



Frage 2 – Berechnung des pH-Werts von Lösungen von Gemischen (8 Punkte)

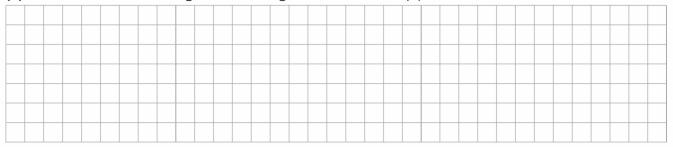

Geben Sie jeweils die Gleichung und eine Tabelle mit den Stoffmengen der Edukte und der Produkte, vor und nach dem Vermischen, an.

Berechnen Sie dann den pH-Wert der Lösung.

(a) In einem 250-mL-Messkolben werden 25 mL Bromwasserstoffsäure ($c=0,20\ mol\cdot L^{-1}$) und 72 mg Lithiumhydroxid vermischt. Anschließend wird bis zur Eichmarke mit destilliertem Wasser aufgefüllt. (3)

(b) $500 \ mL$ Lösung enthalten 27,24 g Kaliumhydrogensulfat und 35,53 g Natriumsulfat. (2)

(c) In eine Pufferlösung, welche aus 250~mL Essigsäure ($c=0.60~mol\cdot L^{-1}$) und 106,73~g Magnesiumacetat hergestellt wurde, gibt man 300~mL Salzsäure ($c=3.00~mol\cdot L^{-1}$). (3)



II. <u>Elektrochemie (5 + 3 = 8 Punkte)</u>

Frage 3 - Galvanisches Element (5 Punkte)

In einer Halbzelle taucht eine Zinnelektrode in einer Zinn(II)-chlorid-Lösung ($c=1\frac{mol}{L}$) in der anderen wird eine Graphitelektrode in wässriger Phase von Chlorgas ($p=1\ bar$) umspült. Beide Halbelemente sind durch ein Diaphragma getrennt.


(a) Erstellen Sie das Zelldiagramm dieser galvanischen Zelle. (1)

(b) Geben Sie die Anode und die Kathode, den Plus- und den Minuspol, die Reduktions- und Oxidationsmittel, die Elektrodenreaktionen und die Zellreaktion an. (3)

(c) Berechnen Sie die Zellspannung der galvanischen Zelle. (1)

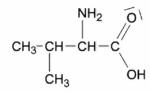
Frage 4 – Chloralkali-Elektrolyse (3 Punkte)

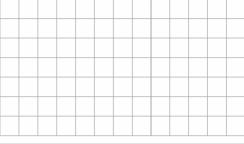
Mittels der Chloralkali-Elektrolyse können bereits seit Ende des 19. Jahrhunderts großtechnisch die wichtigen Grundchemikalien Chlor, Wasserstoff und Kalilauge aus Kaliumchlorid und Wasser erzeugt werden. In einer der Halbzellen taucht eine Elektrode in eine Kaliumchlorid-Lösung und es bildet sich bei eingeschaltetem Strom Chlorgas an der Elektrode. In der anderen Halbzelle befindet sich eine Elektrode, welche lediglich in Wasser taucht. An dieser Elektrode bildet sich bei Stromfluss Wasserstoffgas und das Wasser wird zunehmend basisch – es entsteht Kalilauge.

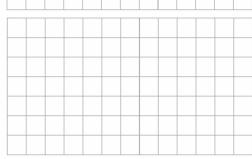
(a) Geben Sie die Teilgleichungen für die Oxidation und die Reduktion an. Identifizieren Sie Anode und Kathode sowie deren Polung. (2)

(b) Erstellen Sie die Gesamtgleichung der Elektrolyse. (1)

III. Organische Chemie (10 + 11 + 14 = 35 Punkte)

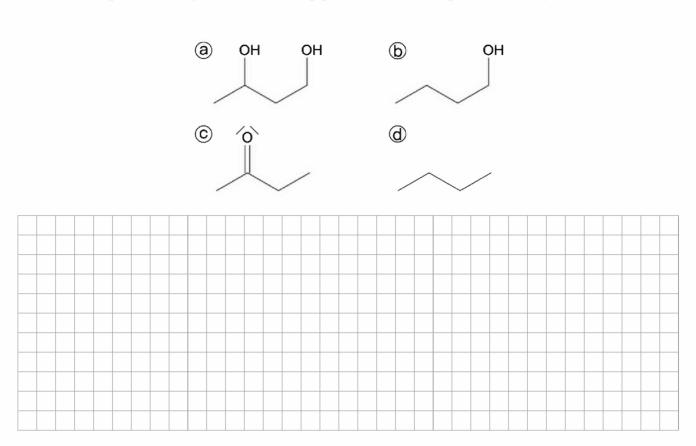

Frage 5 – Benennungen nach der IUPAC-Nomenklatur und Siedepunkte (10 Punkte)


(a) Benennen Sie folgende Moleküle mit vollständigem IUPAC-Namen. (1,5)


i.

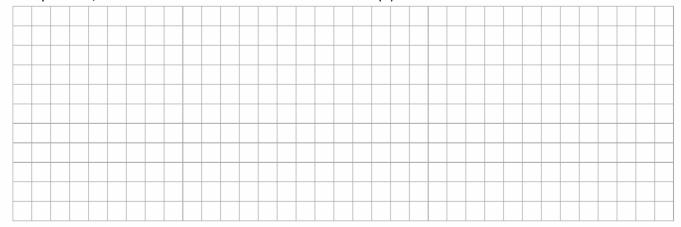
$$\begin{array}{ccc} \operatorname{CH_3} & \operatorname{OH} \\ | & | \\ \operatorname{CH_3-C---} \operatorname{CH--CH--CH_3} \\ | & | \\ \operatorname{CH_3} \end{array}$$

ii.

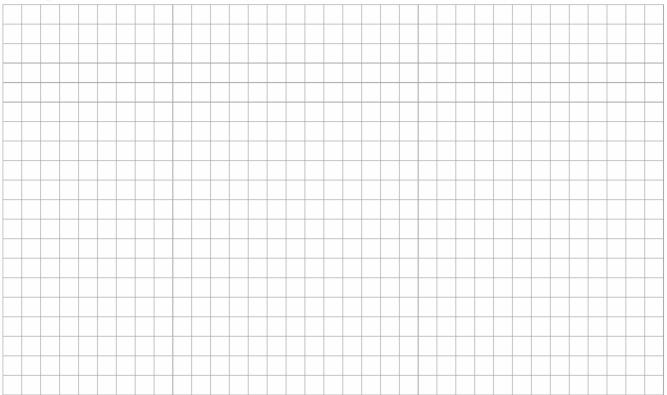

(b) Zeichnen Sie die Skelettformel der folgenden Moleküle. (1,5)

i. 2-Methylpropansäurebutylester

ii.	Pent-4-en-2-ol
	T CITE T CIT Z OF


(c)	Zeichnen	Sie die Halbstrukturformeln folgender Moleküle. (1,5)
	i.	2-Methylpropanal
	ii.	4-Oxopentansäuremethylester
(d)		Sie folgende Moleküle in der Keil-Strich-Schreibweise und geben Sie die Prioritäten
(d)	an. (2,5)	
(d)		Sie folgende Moleküle in der Keil-Strich-Schreibweise und geben Sie die Prioritäten (R)-1-Brompentan-3-ol
(d)	an. (2,5)	
(d)	an. (2,5) i.	(R)-1-Brompentan-3-ol
(d)	an. (2,5)	
(d)	an. (2,5) i.	(R)-1-Brompentan-3-ol

(e) Ordnen Sie die folgenden Verbindungen nach aufsteigenden Siedepunkten. Begründen Sie die Reihenfolge indem sie jeweils die vorrangigen Wechselwirkungen anführen. (3)



Frage 6 – Oxidation von Alkoholen (4 + 4,5 + 2,5 = 11 Punkte)

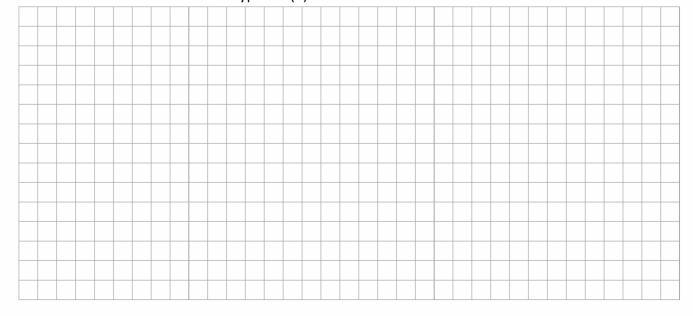
(a) Zeichnen Sie die Halbstrukturformeln der vier Konstiutionsisomere der Alkohole C₄H₁₀O. Benennen Sie die Alkohole nach IUPAC. Kennzeichnen Sie, ob es sich bei diesen Alkoholen um primäre, sekundäre oder tertiäre Alkohole handelt. (4)

(b) Wählen Sie von den unter (a) gezeichneten Alkoholen je einen primären, sekundären und einen tertiären aus. Erstellen Sie für diese drei Alkohole (falls möglich) die Reaktionsgleichungen mit CuO. Geben Sie jeweils die relevanten Oxidationszahlen an und benennen Sie das jeweilige organische Produkt nach IUPAC. (4,5)

(c) Eines der unter (b) gebildeten Produkte kann mit der Tollens-Probe nachgewiesen werden. Erstellen Sie die entsprechende Redoxgleichung (inklusive Teilgleichungen der Oxidation und Reduktion). (2,5)

Frage 7 – Reaktion von Bromwasser mit Hexan (3 + 7 + 1 + 1 + 2 = 14) Punkte

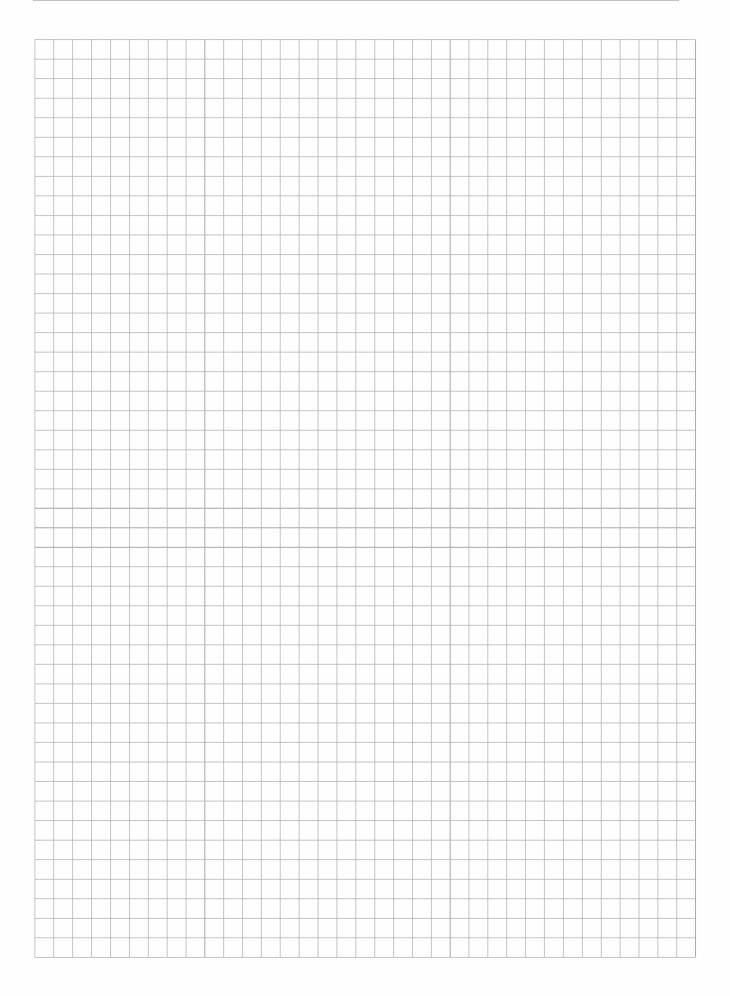
Die Reaktion zwischen Bromwasser und Hexan wird in einem Reagenzglas durchgeführt, welches für mehrere Minuten einem starken UV-Licht ausgesetzt wird.


Nach dieser Bestrahlung sind folgende Beobachtungen festzuhalten:

- 1. Die wässrige Phase hat sich nahezu vollständig entfärbt.
- 2. Ein feuchtes Universalindikator-Papier, welches man über die Öffnung des Reagenzglases hält, verfärbt sich rot.

(a) Erklären Sie beide Beobachtungen! (3)

(b) Stellen Sie den gesamten Reaktionsmechanismus (mit Skelettformeln, inklusive Pfeile) für die in Frage 7 durchgeführte Reaktion auf und benennen Sie die Reaktionsschritte. Geben Sie auch den Namen dieses Reaktionstyps an! (7)



c)	Welche	ussage ist korrekt? (1)							
	Durch	die Bestrahlung mit UV-Licht							
	A	findet eine heterolytische Spaltung statt.							
	□ B	findet eine Aktivierung der Doppelbindung statt.							
	□ c	findet eine Polarisierung der Br-Br-Bindung statt.							
	D	findet eine homolytische Spaltung statt.							
d)	Welche	e Aussage ist korrekt? (1)							
	Die Ph	otohalogenierung ist							
	A	ein hochspezifischer Reaktionstyp, bei welchem nur ein einziges Produkt entsteht.							
	B	ein Reaktionstyp, welcher nur mit künstlichem UV-Licht abläuft.							
	□ c	ein unspezifischer Reaktionstyp, bei welchem viele unterschiedliche Halogenalkane, sowie Di- oder Tribromalkane entstehen können.							
	□ D	eine Additionsreaktion, da einem Alkan Brom hinzugefügt wird.							

(e) Das gebildete Bromalkan kann mittels einer Probe nachgewiesen werden. Benennen Sie diese Probe und erklären Sie, wie diese Probe durchgeführt wird. (2)

	Наи	ıpt -		D	as Pe	riode	nsys	tem d	er Ele	emen	te				gruț	ppen		
	1 IA	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	18 VIIIA
	1,0 1H																	4,0 2 He
;	6,9 3 Li	^{9,0} ₄ Be					Nebeng	grupper	,				10,8 5 B	12,0 6 C	14,0 7 N	16,0 8 O	19,0 ₉ F	^{20,2} ₁₀ Ne
	^{23,0} 1 Na	^{24,3} ₁₂ Mg	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	^{27,0} ₁₃ Al	^{28,1} ₁₄ Si	31,0 15 P	32,1 16 S	35,5 17 Cl	39,9 18 A r
	39,1 19 K	^{40,1} ₂₀ Ca	^{45,0} ₂₁ Sc	47,9 22 T i	50,9 23 V	^{52,0} ₂₄ Cr	^{54,9} 25 Mn	55,8 26 Fe	58,9 27 Co	58,7 28 N i	63,5 29 C u	65,4 30 Zn	^{69,7} 31 Ga	^{72,6} ₃₂ Ge	^{74,9} ₃₃ As	^{79,0} ₃₄ Se	^{79,9} ₃₅ Br	83,8 36 K r
	85,5 7 Rb	87,6 38 S r	88,9 39 Y	91,2 40 Zr	92,9 41 Nb	95,9 42 Mo	99 43 Tc	101,1 44 Ru	102,9 45 Rh	106,4 46 Pd	107,9 47 Ag	112,4 48 Cd	114,8 49 ln	118,7 50 Sn	121,8 51 Sb	127,6 52 Te	126,9 53	131,3 54 Xe
	132,9 5 Cs	137,3 56 Ba	57 bis 71 La-L u	178,5 72 Hf	180,9 73 Ta	183,8 74 W	186,2 75 Re	190,2 76 Os	192,2 77 r	195,1 78 Pt	197,0 79 A u	^{200,6} ₈₀ Hg	204,4 81 TI	^{207,2} ₈₂ Pb	209,0 83 Bi	209 84 Po	210 85 At	222 86 Rn
	223 7 Fr	226 88 Ra	89 bis 103 AC-L r		262 105 Db	263 106 Sg	262 107 Bh	265 108 Hs	268 109 M t	269 110 Uun	272 111 Uuu	277 112 Uub		289 114 Uuq		289 116 Uuh		293 118 Uuo
	Lar	nthand	oide	138,9 57 La	140,1 58 Ce	140,9 59 Pr	144,2 60 Nd	147 61 Pm	150,4 62 Sm	152,0 63 Eu	157,3 64 Gd	158,9 65 Tb	162,5 66 Dy	164,9 67 Ho	167,3 68 Er	168,9 69 Tm	173,0 70 Yb	175,0 71 Lu
	A	ctinoid	de	227 89 Ac	232 90 Th	231 91 Pa	238 92 U	237 93 Np	244 94 Pu	243 95 Am	247 96 Cm	247 97 Bk	251 98 Cf	252 99 Es	257 100 Fm	258 101 Md	259 102 No	260 103 Lr

Berechnungen von pH-Werten

Sehr starke Säuren, extrem starke Säuren

$$pH = -log(c(H_3O^+)) = -log(c_0(HA))$$

Schwache Säuren

$$pH = \frac{1}{2}pK_5 - \frac{1}{2}\log(c_0(HA))$$

Starke Basen

pOH =
$$-\log(c(OH^{-})) = -\log(c_0(A^{-}))$$

pH = 14 - pOH = 14 + $\log(c_0(A^{-}))$

Schwache Basen

pOH =
$$\frac{1}{2}$$
 pK_B - $\frac{1}{2}$ log(c₀(A⁻))
pH = 14 - pOH = 14 - $\frac{1}{2}$ pK_B + $\frac{1}{2}$ log(c₀(A⁻))

Pufferlösungen

$$pH = pK_S + log(\frac{c_{A^-}}{c_{HA}}) = pK_S + log(\frac{n_{A^-}}{n_{HA}})$$

Indikatoren

Indikator	Farbe der Säure	pH-Bereich des Farbumschlags	Farbe der Base	PK_(Hin)
Thymolblau	rot	1,2- 2,8	gelb	1,7
Methylorange	rot	3,0-4,4	gelb-orange	3,4
Bromkresolgrün	gelb	3,8- 5,4	blau	4,7
Methylrot	rot	4,2- 6,2	gelb	5,0
Lackmus	rot	5,0- 8,0	blau	6,5
Bromthymolblau	gelb	6,0- 7,6	blau	7,1
Thymolblau	gelb	8,0 - 9,6	blau	8,9
Phenolphthalein	farblos	8,2-10,0	purpur	9,4
Thymolphthalein	farblos	9,3-10,5	blau	10,0
Alizaringelb R	gelb	10,1 -12,1	rot	11,2

Tabelle mit pK_S und pK_B Werten

р <i>К</i> s	Säure		korr	espondierende Base	р <i>К</i> в
	Perchlorsäure	HClO ₄	ClO ₄ -	Perchlorat-Ion	
Pr	lodwasserstoffsäure	HI	1-	lodid-lon	Keine Protonenaufnahme
/ollst otone	Bromwasserstoff	HBr	Br-	Bromid-Ion	
Vollständige Protonenabgabe	Salzsäure	HCl	Cl-	Chlorid-Ion	
e abe	Schwefelsäure	H ₂ SO ₄	HSO ₄ -	Hydrogensulfat-Ion	hme
	Salpetersäure	HNO ₃	NO ₃ -	Nitrat-Ion	
	Oxonium-lon	H ₃ O ⁺	H ₂ O	Wasser	
1,42	Oxalsäure	$H_2C_2O_4$	$HC_2O_4^-$	Hydrogenoxalat-Ion	12,58
1,92	Hydrogensulfat-Ion	HSO ₄ ⁻	SO ₄ ²⁻	Sulfat-Ion	12,08
2,13	Phosphorsäure	H ₃ PO ₄	H ₂ PO ₄ -	Dihydrogenphosphat-Ion	11,87
2,22	Hexaaquaeisen(III)-lon	$[Fe(H_2O)_6]^{3+}$	[Fe(OH)(H ₂ O) ₅] ²⁺	Pentaaquahxdroxyeisen(III)-lon	11,78
3,14	Flusssäure (Fluorwasserstoffsäure)	HF	F-	Fluorid-Ion	10,86
3,35	Salpetrige Säure	HNO ₂	NO ₂ -	Nitrit-Ion	10,65
3,75	Ameisensäure (Methansäure)	НСООН	HCOO-	Methanoat-Ion (Formiat)	10,25
4,75	Essigsäure (Ethansäure)	CH₃COOH	CH ₃ COO-	Ethanoat-Ion (Acetat)	9,25
4,85	Hexaaquaaluminium-lon	$[Al(H_2O)_6]^{3+}$	[Al(OH)(H ₂ O) ₅] ²⁺	Pentaaquahxdroxyaluminium-lon	9,15
6,52	Kohlensäure	$CO_2 + H_2O$	HCO ₃ -	Hydrogencarbonat–Ion	7,48
6,92	Schwefelwasserstoff	H ₂ S	HS-	Hydrogensulfid-Ion	7,08
7,00	Hydrogensulfit-Ion	HSO_3^-	SO ₃ ²⁻	Sulfit-Ion	7,00
7,20	Dihydrogenphosphat-lon	$H_2PO_4^-$	HPO ₄ ²⁻	Hydrogenphosphat-Ion	6,80
9,25	Ammonium-lon	NH ₄ +	NH ₃	Ammoniak	4,75
9,40	Blausäure (Cyanwasserstoff)	HCN	CN-	Cyanid-Ion	4,60
10,40	Hydrogencarbonat-lon	HCO ₃ -	CO ₃ ²⁻	Carbonat-Ion	3,60
11,62	Wasserstoffperoxid	H_2O_2	HO ₂ -	Hydrogenperoxid-lon	3,38
12,36	Hydrogenphosphat-Ion	HPO ₄ ²⁻	PO ₄ 3-	Phosphat-Ion	1,64
13,00	Hydrogensulfid-lon	HS-	S ²⁻	Sulfid-Ion	1,00
	Wasser	H ₂ O	OH-	Hydroxid-Ion	
	Ethanol	CH ₃ CH ₂ OH	CH ₃ CH ₂ O ⁻	Ethanolat-Ion	
Proto	Methanol	CH₃OH	CH ₃ O-	Methanolat-Ion	Vollständige Protonenaufnahme
Keine Protonenabgabe	Ammoniak	NH ₃	NH ₂ -	Amid-lon	Vollständige tonenaufnah
) bgabe	Hydroxid-lon	OH-	O ²⁻	Oxid-lon	dige Inahm
	Wasserstoff	H ₂	H-	Hydrid-Ion	е

Standardpotenziale bei 25 °C

,			-011
Red	=	Ox + n e ⁻	<i>E⊖</i> / V
Li(s)	=	Li ⁺ (aq) + e ⁻	-3,02
K(s)	\rightleftharpoons	$K^{+}(aq) + e^{-}$	-2,92
Ba(s)	\rightleftharpoons	$Ba^{2+}(aq) + 2e^{-}$	-2,90
Ca(s)	\rightleftharpoons	Ca ²⁺ (aq) + 2 e ⁻	-2,76
Na(s)	\rightleftharpoons	Na ⁺ (aq) + e ⁻	-2,71
Mg(s)	\rightleftharpoons	$Mg^{2+}(aq) + 2 e^{-}$	-2,38
Al(s)	\rightleftharpoons	Al ³⁺ (aq) + 3 e ⁻	-1,66
N ₂ H ₄ (aq) + 4 OH ⁻ (aq)	\rightleftharpoons	$N_2(g) + 4 H_2O(I) + 4 e^-$	-1,16
$SO_3^{2-}(aq) + 2 OH^{-}(aq)$	\rightleftharpoons	$SO_4^{2-}(aq) + H_2O(l) + 2 e^-$	-0,92
H ₂ (g) + 2 OH⁻(aq)	\rightleftharpoons	2 H ₂ O(I) + 2 e [−]	-0,83
Zn(s)	\rightleftharpoons	$Zn^{2+}(aq) + 2 e^{-}$	-0,76
Fe(s)	\rightleftharpoons	$Fe^{2+}(aq) + 2 e^{-}$	-0,41
Cd(s)	\rightleftharpoons	Cd ²⁺ (aq) + 2 e ⁻	-0,40
$Pb(s) + SO_4^{2-}(aq)$	\rightleftharpoons	PbSO ₄ (s) + 2 e ⁻	-0,36
Ni(s)	\rightleftharpoons	$Ni^{2+}(aq) + 2 e^{-}$	-0,23
$H_2O_2(aq) + 2 OH^-(aq)$	=	$O_2(g) + 2 H_2O(I) + 2 e^-$	-0,15
$Ag(s) + I^{-}(aq)$	÷	Agl(s) + e ⁻	-0,15
Sn(s)	=	Sn ²⁺ (aq) + 2 e ⁻	-0,14
Pb(s)	+	Pb ²⁺ (aq) + 2 e ⁻	-0,13
Fe(s)	+	Fe ³⁺ (aq) + 3 e ⁻	-0,13 -0,04
		2 H₃O⁺(aq) + 2 e⁻	-0,04 0
$H_2(g) + 2 H_2O(1)$	=	• •	
$Ag(s) + Br^{-}(aq)$,	AgBr(s) + e^{-}	0,07
$H_2S(g) + 2 H_2O(I)$	=	S(s) + 2 H ₃ O ⁺ (aq) + 2 e ⁻	0,14
Cu ⁺ (aq)	\rightleftharpoons	$Cu^{2+}(aq) + e^{-}$	0,16
$H_2SO_3(aq) + 5 H_2O(1)$	\rightleftharpoons	$SO_4^{2-}(aq) + 4 H_3O^+(aq) + 2 e^-$	0,20
$Ag(s) + Cl^{-}(aq)$	\rightleftharpoons	AgCl(s) + e ⁻	0,22
2 Hg(I) + 2 Cl ⁻ (aq)	\rightleftharpoons	$Hg_2Cl_2(s) + 2 e^-$	0,27
2 Ag(s) + 2 OH⁻(aq)	\rightleftharpoons	$Ag_2O(s) + H_2O(I) + 2 e^{-}$	0,34
Cu(s)	\rightleftharpoons	Cu ²⁺ (aq) + 2 e ⁻	0,34
4 OH⁻(aq)	\rightleftharpoons	$O_2(g) + 2 H_2O(I) + 4 e^-$	0,40
$Cl_2(g) + 4 OH^-(aq)$	\rightleftharpoons	2 OCl⁻(aq) + 2 H₂O(l) + 2e⁻	0,42
Cu(s)	\rightleftharpoons	Cu ⁺ (aq) + e ⁻	0,52
2 I⁻(aq)	\rightleftharpoons	$I_2(s) + 2 e^-$	0,54
$MnO_2(s) + 4 OH^-(aq)$	\rightleftharpoons	$MnO_4^-(aq) + 2 H_2O(I) + 3 e^-$	0,59
$H_2O_2(aq) + 2 H_2O(l)$	\rightleftharpoons	$O_2(g) + 2 H_3O^+(aq) + 2 e^-$	0,68
Fe ²⁺ (aq)	\rightleftharpoons	$Fe^{3+}(aq) + e^{-}$	0,77
Ag(s)	\rightleftharpoons	Ag ⁺ (aq) + e ⁻	0,80
2 Hg(I)	\rightleftharpoons	Hg ₂ ²⁺ (aq) + 2 e ⁻	0,80
Hg(I)	\rightleftharpoons	$Hg^{2+}(aq) + 2 e^{-}$	0,85
$NO(g) + 6 H_2O(I)$	\rightleftharpoons	$NO_3^-(aq) + 4 H_3O^+(aq) + 3 e^-$	0,96
2 Br ⁻ (aq)	\rightleftharpoons	Br₂(aq) + 2 e ⁻	1,07
Pt(s)	_	Pt ²⁺ (aq) + 2 e ⁻	1,20
$I_2(s) + 18 H_2O(l)$	<u>`</u>	$2 IO_3^-(aq) + 12 H_3O^+(aq) + 10 e^-$	1,20
$Mn^{2+}(aq) + 6 H_2O(I)$	+	$MnO_2(s) + 4 H_3O^+(aq) + 2 e^-$	1,21
6 H ₂ O(I)	=	$O_2(g) + 4 H_3O^+(aq) + 4 e^-$	1,23
2 Cr ³⁺ (aq) + 21 H ₂ O(I)	+	$Cr_2O_7^{2-}(aq) + 14 H_3O^+(aq) + 6 e^-$	1,33
2 Cl ⁻ (aq)	+	$Cl_2(g) + 2e^{-}$	1,36
Au(s)	+	$Au^{3+}(aq) + 3e^{-}$	
			1,42
$Pb^{2+}(aq) + 6 H_2O(I)$,	$PbO_2(s) + 4 H_3O^+(aq) + 2 e^-$	1,46
$Mn^{2+}(aq) + 12 H_2O(I)$	<i>–</i>	$MnO_4^-(aq) + 8 H_3O^+(aq) + 5 e^-$	1,49
$MnO_2(s) + 6 H_2O(l)$,	$MnO_4^-(aq) + 4 H_3O^+(aq) + 3 e^-$	1,68
$PbSO_4(s) + 5 H_2O(l)$	=	$PbO_2(s) + HSO_4^-(aq) + 3 H_3O^+(aq) + 2 e^-$	1,69
4 H ₂ O(I)	=	$H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^-$	1,78
2 SO ₄ ²⁻ (aq)	\rightleftharpoons	$S_2O_8^{2-}(aq) + 2 e^-$	2,00
2 F ⁻ (aq)	\rightleftharpoons	$F_2(g) + 2 e^-$	^{2,87} 19/20

Organische Chemie

Prioritätenliste und Benennung der Verbindungen

Prioritätenliste		
Verbindungsklasse	Vorsilbe	Endung
Carbonsäure	carboxy	säure
Ester		säureester
Aldehyd	formyl	al
Keton	oxo	on
Alkohol	hydroxy	ol
Amin	amino	amin
Alken		en
Halogen	halogen	