EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 — QUESTIONNAIRE ÉCRIT Date: 07.06.23 Durée: 08:15 - 10:15 Numéro candidat: Discipline: Section(s): GSH

Bei Berechnungen ist der ausführliche Rechenweg (erst Formeln, dann umstellen und dann erst Zahlenwerte samt Einheiten einsetzen) anzugeben.

Die Ergebnisse sind mit 3 signifikanten Stellen anzugeben.

Säuren und Basen 27 Punkte

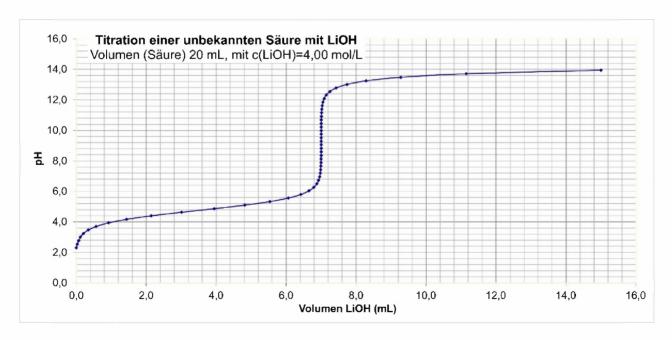
- 1. Eine unbekannte Base B hat die Konzentration c(B) = 0,3 M und einen pH-Wert von 13,48. 7P
 - 1.1. Begründen Sie, ob es sich um eine starke oder eine schwache Base handelt. (1)
 - **1.2.** 100 mL dieser Base **B** werden mit 1900 mL destilliertem Wasser auf 2 L verdünnt. Berechnen Sie den pH-Wert der neuen Lösung. (2)
 - 1.3. Mit der Base B werden 10 mL einer 0,20 molaren Ameisensäure titriert. Welches Volumen (in mL) an Base wird hierzu benötigt? (1)
 - **1.4.** Bestimmen Sie den pH-Wert am Äquivalenzpunkt. Berücksichtigen Sie die Volumenänderung bei der Berechnung der Konzentration. (3)
- 2. Die Lösung A entsteht durch Mischen von 250 mL Dihydrogenphosphat (c = 0,25 M) und 250 mlHydrogenphosphat (c = 0,45 M):
 - **2.1.** Berechnen Sie den pH-Wert der Lösung **A**.
 - 2.2. Zur Lösung A werden 200 mL destilliertes Wasser gegeben. Bestimmen Sie den neuen pH-Wert der Lösung. (1)
 - **2.3.** Zur Lösung **A** werden 100 mL Salpetersäure (c = 0,5 M) gegeben. Berechnen Sie den pH-Wert der Lösung **A** nach Zugabe der Salpetersäure. (5)

(1)

3. Theorie: 6P

3.1. Leiten Sie die Formel zur Berechnung des pH-Wertes einer schwachen Säure ausgehend von der Gleichgewichtskonstante K_S her. Erläutern Sie wie Sie von einem Schritt zum Nächsten gelangen. Gehen Sie von folgender Gleichung aus:

$$HA + H2O \rightleftharpoons A^{-} + H3O^{+}$$
 (5)


- 3.2. Geben Sie alle korrespondierende Säure/Base-Paare aus obiger Gleichung an. (1)
- 4. Natriumhydrogencarbonat

4P

4.1. Erklären Sie anhand von Reaktionsgleichungen, dass Hydrogencarbonat ein Ampholyt ist.

(1)

- **4.2.** Sie lösen Natriumhydrogencarbonat in Wasser. Geben Sie die Lösungsgleichung an. Schätzen Sie den pH-Wert der Lösung ab. Sie geben Lackmus zur Natriumhydrogencarbonat-Lösung. Welche Farbe hat die Lösung? (3)
- 5. 20 mL einer unbekannten Säure S wurden mit Lithiumhydroxid (c = 4 mol/L) titriert. Dabei wurde die untenstehende Titrationskurve erhalten.
 - 5.1. Bestimmen Sie graphisch den Äquivalenz- sowie den Halbäquivalenzpunkt. (1,5)

5.2. Geben Sie an, um welche Säure es sich bei **S** handelt und erläutern Sie ihr Vorgehen. (1,5)

9.3. Ausgehend von einem Alkohol.

Orbitalmodell 9 Punkte 3P **6.** Geben Sie die Elektronenkonfiguration (Ekf) folgender Teilchen an. **6.1.** einfache Ekf von Samarium Sm. (1,5)6.2. vereinfachte Ekf vom Chrom(III)-Ion Cr³⁺. (1,5)7. Stellen Sie das Energiediagramm von Stickstoff im Ammoniak NH₃ für den Grundzustand, den **3**P angeregten Zustand und den hybridisierten Zustand dar. 8. Stellen Sie Ammoniak im Orbitalmodell dar. Beschriften Sie alle Bindungen und Orbitale. Zeichnen Sie die beteiligten Elektronen als Pfeile dar. **3P Organische Chemie** 24 Punkte 9. 2-Chlorpropan kann auf verschiedene Methoden hergestellt werden. Geben Sie jeweils die Reaktionsgleichung an. Benenne Sie die Edukte und den ablaufenden Reaktionsmechanismus mit Abkürzung an. Falls mehrere Mechanismen möglich sind, begründen Sie Ihre Wahl. 6P 9.1. Ausgehend von einem Alken. (1,5)9.2. Ausgehend von einem Alkan. (1,5)

(3)

10. Isomerie:

10.1. Vom Molekül 1-Brom-3-fluor-2-methylprop-1-en existieren zwei Diastereoisomere. Stellen Sie beide dar und erläutern Sie um welches Diastereoisomer es sich jeweils handelt. (3)

- **10.2.** Mit der Summenformel C₃H₆O₂ existieren sehr viele Isomere. Stellen Sie die Isomere in der Halbstrukturschreibweise dar, welche den angegebenen Anforderungen entsprechen und benennen Sie die Moleküle.
 - 10.2.1. Der Stoff zeigt einen negativen Nachweis mit dem Schiff Reagenz und hat einen pH<7.(1)
 - **10.2.2.** Der Stoff zeigt einen positiven Nachweis mit DNPH, aber nicht mit dem Tollens-Reagenz. Der Nachweis mit Cer(IV)-Ammoniumnitrat ist positiv. (1)
 - 10.2.3. Der Fehling-Nachweis liefert einen rot-braunen Niederschlag und bei Zugabe von Cer(IV)-Ammoniumnitrat f\u00e4rbt sich die L\u00f6sung rot. (1)
- 11. Rum wird in vielen Ländern nach unterschiedlicher Art und Weise hergestellt. Charakteristisch für das Rumaroma ist ein Carbonsäureester welcher aus Propansäure und Butan-1-ol gebildet wird.
 - 11.1. Formulieren Sie den Reaktionsmechanismus für die allgemeine Synthese eines Esters (R₁COOR₂) und benennen Sie den Rumester korrekt. (5)
 - 11.2. Bei einigen Flaschen beschweren sich die Kunden, dass das Rumaroma sehr schwach ist. Der Produktionsleiter erklärt, dass alle Flaschen ordnungsgemäß mit Natronlauge gereinigt wurden. Wie erklären Sie sich die Abwesenheit des Rumaromas? Geben Sie eine Reaktionsgleichung an.
 (2)
- 12. Ordnen Sie folgende Stoffe nach steigender Siedetemperatur und begründen Sie ihre Reihenfolge.
 - (1) 2-Propanol
 - (2) Propansäure
 - (3) Propanal
 - (4) n-Butan
 - (5) iso-Butan (2-Methylpropan)

pK _s	Säure		Korr	respondierende Base	pK _B		
ge gabe	Perchlorsäure	HClO ₄	ClO ₄ -	Perchlorat-Ion	ıhme		
Vollständige Protonenabgabe	Iodwasserstoffsäure	ні	I -	Iodid-Ion	Keine nenaufna		
Voll Protor	Bromwasserstoffsäure	HBr	Br -	Bromid-Ion	Keine Protonenaufnahme		
	Salzsäure	HC1	C1 -	Chlorid-Ion			
	Schwefelsäure	H_2SO_4	HSO ₄ ⁻	Hydrogensulfat-Ion			
-1,74	Oxonium-Ion	$\mathrm{H_{3}O^{+}}$	H_2O	Wasser	15,74		
-1,32	Salpetersäure	HNO ₃	NO ₃ -	Nitrat-Ion	12,08		
1.88	Schwefelige Säure	H ₂ SO ₃	HSO ₃ -	Hydrogensulfit-Ion	12.12		
1.92	Hydrogensulfat-Ion	HSO ₄ -	SO ₄ ²⁻	Sulfat-Ion	12.08		
2.13	Phosphorsäure	H ₃ PO ₄	H ₂ PO ₄ ⁻	Dihydrogenphosphat-Ion	11.87		
3.14	Flusssäure (Fluorwasserstoffsäure)	HF	F -	Fluorid-Ion	10.86		
3.35	Salpetrige Säure	HNO ₂	NO ₂ -	Nitrit-Ion	10.65		
3.75	Ameisensäure (Methansäure)	НСООН	HCOO-	Formiat-Ion (Methanoat-Ion)	10.25		
4.75	Essigsäure (Ethansäure)	CH₃COOH	CH ₃ COO -	Acetat-Ion (Ethanoat-Ion)	9.25		
6.52	Kohlensäure	$H_2CO_3 / H_2O + CO_2$	HCO ₃ -	Hydrogencarbonat-Ion	7.48		
6.92	Schwefelwasserstoff Säure	H_2S	HS-	Hydrogensulfid-Ion	7.08		
7.00	Hydrogensulfit-Ion	HSO ₃ -	SO ₃ ²⁻	Sulfit-Ion	7.00		
7.20	Dihydrogenphosphat-Ion	H ₂ PO ₄ -	HPO ₄ ²⁻	Hydrogenphosphat-Ion	6.80		
9.25	Ammonium-Ion	NH ₄ ⁺	NH ₃	Ammoniak	4.75		
9.40	Blausäure (Cyanwasserstoff Säure)	HCN	CN-	Cyanid-Ion	4.60		
10.40	Hydrogencarbonat-Ion	HCO ₃ -	CO ₃ ²⁻	Carbonat-Ion	3.60		
12.36	Hydrogenphosphat-Ion	HPO ₄ ²⁻	PO ₄ ³⁻	Phosphat-Ion	1.64		
13.00	Hydrogensulfid-Ion	HS-	Sulfid-Ion		1.00		
15,74	Wasser	$\mathrm{H}_2\mathrm{O}$	ОН -	Hydroxid-Ion	-1,74		
- L C	Methanol	CH₃OH	CH ₃ O -	Methanolat-Ion	tige .n- ne		
Keine Protonen- abgabe	Ethanol	CH₃CH₂OH	CH ₃ CH ₂ O ⁻	Ethanolat-Ion	Vollständige Protonen- aufnahme		
Pro	Hydroxid-Ion	OH -	O ²⁻ Oxid-Ion				

Indikator	Farbe der Säure	pK _S	Farbe der Base				
Thymolblau	rot	1,7	gelb				
Methylorange	rot	3,8	gelb-orange				
Bromkresolgrün	gelb	4,7	blau				
Methylrot	rot	5,1	gelb				
Lackmus	rot	6,5	blau				
Bromthymolblau	gelb	7,0	blau				
Phenolphthalein	farblos	9,4	purpur				
Alizaringelb R	gelb	11,1	rot				

Periodensystem der Elemente

	Haupt-						Nebeng	ruppen							-gru	ppen						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18				
1	la 1,00794 1 H					.007 9 4												VIIIa 4,002602 2 He				
(K)	2,1	lla	EN nac	h Pauling		,1 □							IIIa	IVa	Va	Vla	VIIa	2116				
2 (L)	6,941 3 Li	9,012182 4 Be									10,811 5 B 2,0	12,0107 6 C 2,5	14,00674 7 N 3,0	15,9994 8 O 3,5	18.9984 9 F 4,0 □	20,1797 10 Ne						
3 (M)	22,98977 11 Na 0,9	24,305 12 Mg 1,2	IIIb	IVb	Vb	Vlb	VIIb		VIII		lb	Ilb	26,98154 13 A I 1,5	28,0855 14 Si 1,8	30,97376 15 P 2,1	32,066 16 S 2,5	35,4527 17 C 3,0 \square	39,948 18 Ar				
	39,0983	40,078	44,95591	47,867	50,9415	51,9961	54,93805	55,845	58,9332	58,6934	63,546	65,409	69,723	72,61	74,9216	78,96	79,904	83,8				
4	19 K	20Ca	21 SC	22 Ti	23 V	24Cr	25 Mn	26 Fe	27 Co	28 N i	29 C u	30 Zn	31Ga	32 Ge	33 As	34 Se	35 Br	36Kr				
(N)	85,4678	87,62	88,90585	91,224	92,90638	95,94	[98]	101,07	102,9055	106,42	107,8682	112,411	114,818	118,71	121,76	127,6	2,8 126,9045	131,29				
5	37 Rb	38 Sr	39 Y	40 Z r	41 Nb	42 MO	43 TC	44 Ru	45Rh	46 Pd	47Ag	48 Cd	49 ln	50 S n	51 Sb	52 Te	53	54 Xe				
(O)	132,9055	137,327	138,9055	178,49	180,9479	183,84	186,207	190,23	192,217	195,078	196,9666	200,59	204,3833	207,2	208,9804	[209]	2,5 □	[222]				
6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 O S	77 r	78 Pt	79 A u	80 Hg	81 TI	82 Pb	83 B i	84 Po	85At	86Rn				
(P)							•							-		4A =	4 4 ■	44 🗆				
7	[223] 87 Fr	[226] 88 Ra	[227] 89 AC	[261] 104 Rf	[262] 105 Db	[263] 106 S g	[264] 107 Bh	[265]	[268] 109 M t	[269] 110 DS	[272] 111 Rg	[277] 112 Cn	[287] 113 Nh	[289] 114 F [[288] 115 M C	[289]	[293] 117 TS	[294] 118 O g				
(Q)			89AC	104		106 3 g		108□5	1091VIL	110DS	111Ky	112 C 11	113IVII	114FI	115IVIC	116 🗆 🗸		_				
(4)																						
		Lanth	anoide	140,116 58 Ce	140,9077 59 Pr	144,24 60 Nd	[145] 61 Pm	150,36 62 Sm	151,964 63 Eu	157,25 64 Gd	158,9253 65 Tb	162,5 66 Dy	164,9303 67 HO	167,26 68 Er	168,9342 69 Tm	173,04 70 Yb	174,967 71 LU					
	Actinoide		[232] 90 Th	[231] 91 Pa	[238] 92 U	[237] 93 Np	[244] 94 Pu		[247] 96 Cm	[247] 97 BK	[251] 98 Cf	[252] 99 ES		[258] 101 Md	[259] 102 NO							