

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES **2020**

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE	
Mathématiques II	В	Durée de l'épreuve :	260 min
		Date de l'épreuve :	15/09/2020

Numéro du	candidat:		

Instructions

- L'élève répond à toutes les questions de la partie obligatoire.
- L'élève répond à exactement une question de la partie au choix. Il indique obligatoirement son choix en marquant d'une croix la case appropriée ci-dessous.

Seules les réponses correspondant à la question choisie par l'élève seront évaluées. Toute réponse à une question non choisie par l'élève est cotée à 0 point. En l'absence de choix clairement renseigné sur la page de garde la partie au choix est cotée à 0 point.

Partie obligatoire (48 points)

1)	Question 1	20 points			
2)	Question 2	12 points			
3)	Question 3	6 points			
4)	Question 4	10 points			
Partie au choix (12 points)					
	Question 5 : Calcul intégral	12 nointe			
	Question 5. Calcul integral	12 points			
	Question 6 : Calcul d'aire	-			
		12 points			

Partie obligatoire (48 points)

Question 1

On donne la fonction f définie par

$$f(x) = -3 + \frac{2-x}{2} \cdot e^{\left(\frac{-2}{x+2}\right)}$$

Soit C_f la courbe représentative de f dans un repère orthonormé.

- a) Déterminer les domaines de définition et de continuité de f.
- b) Étudier le comportement asymptotique de f.
- c) Calculer la dérivée de f et étudier son signe. Établir le tableau des variations de f.
- d) Calculer la dérivée seconde de f et étudier son signe. Établir le tableau de concavité de f et calculer les coordonnées des points d'inflexion éventuels.
- e) Tracer la courbe représentative \mathcal{C}_f dans un repère orthonormé d'unité 1 cm. Dessiner les asymptotes éventuelles.
- f) Vérifier s'il existe des tangentes à C_f qui passent par le point P(-7; -3). Le cas échéant, ajouter les tangentes au graphique précédent et donner une équation cartésienne de chacune d'elles.

Question 2

a) Résoudre dans \mathbb{R} :

$$1 + x + \log_4 (2^x + 1)^2 \le \log_{\sqrt{2}} \sqrt{3 - 2^x} - \log_2 3$$

b) On donne la fonction f définie par

$$f(x) = \begin{cases} -\sqrt{-x} + 1 + \ln(x^2 + 1) & \text{si } x \le 0 \\ x^x & \text{si } x > 0 \end{cases}$$

- i) Déterminer le domaine de définition de f. Étudier la continuité de f en 0 et donner le domaine de continuité de f.
- ii) Étudier la dérivabilité de f en 0. Donner le domaine de dérivabilité de f, la dérivée de f et une interprétation graphique du point d'abscisse 0 de la courbe de f.
- c) Calculer la limite suivante : $\lim_{x\to -\infty} \left[\cos\left(e^x\right)\right]^{e^{-x}}$

(5+(2,5+2,5)+2) 12 points

Question 3

a) Calculer les réels a, b et c pour que l'égalité suivante soit vérifiée pour tout réel x qui n'annule pas les dénominateurs :

$$\frac{3x+2}{(x+3)(x^2-3x+3)} = \frac{a}{x+3} + \frac{bx+c}{x^2-3x+3}$$

b) Calculer
$$\int \frac{3x+2}{(x+3)(x^2-3x+3)} dx$$
 sur un intervalle I de] $-\infty$; $-3[$.

(2+4) 6 points

Question 4

Calculer les intégrales suivantes :

a)
$$\int \frac{1 + \tan^2 x}{(1 + \tan x)^4} dx$$

b)
$$\int_{2}^{3} x^{2} (3-x)^{5} dx$$

c)
$$\int \sin 3x \cdot \cos^4 2x \, dx$$
 (Indication: Linéariser)

d)
$$\int_{-\ln 2}^{0} e^{x} \cdot \operatorname{Arccos} (1 - e^{x}) dx$$

(1+2+4+3) 10 points

Partie au choix (12 points)

Question 5

Calculer les intégrales suivantes :

a)
$$\int \frac{\ln x}{x^3} dx$$

b) i) Calculer les réels a et b pour que l'égalité suivante soit vérifiée pour tout réel x qui n'annule pas les dénominateurs :

$$\frac{13}{6x^2 + 5x - 6} = \frac{a}{2x + 3} + \frac{b}{3x - 2}$$

ii) Calculer:
$$\int_{-\frac{\pi}{2}}^{0} \frac{13}{5\sin x - 12\cos x} dx$$

c)
$$\int_{0}^{\frac{\pi}{2}} \cos^2 x \cdot e^{3x} dx$$

(2+(1,5+3,5)+5) 12 points

Question 6

- a) Dans un repère orthonormé du plan on note C_f la courbe représentative de la fonction f définie par $f(x) = x \cdot e^{\operatorname{Arcsin} x}$. Calculer l'aire de la partie du plan délimitée par l'axe des abscisses, la courbe C_f et les droites d'équations x = -1 et x = 1.
- b) Dans un repère orthonormé du plan on note :
 - C_f , la courbe représentative de la fonction f définie sur \mathbb{R} par $f(x) = -\frac{1}{2}x^2 + 1$.
 - C, le cercle d'équation $x^2 + (y-1)^2 = 8$. Calculer l'aire de la partie du plan qui est délimitée par C_f et le cercle C et qui contient

Lalculer l'aire de la partie du plan qui est delimitée par \mathcal{L}_f et le cercle \mathcal{L} et qui contient l'origine.

(5+7) 12 points

Question 7

Soit f_m la fonction définie sur $\mathbb R$ par

$$f_m(x) = x + \ln |x^2 - m|$$
, avec $m \in]-\infty;0]$.

et soit C_{f_m} sa courbe représentative dans un repère orthonormé.

- a) Déterminer, en fonction de m, le domaine de définition de f_m .
- b) Calculer les limites de f_m aux bornes du domaine de définition.
- c) Discuter, en fonction de m, les variations de f_m (On ne demande pas les valeurs des extrema éventuels!).

(1+3,5+7,5) 12 points