

EXAMEN DE FIN D'ÉTUDES SECONDAIRES

Session 2016

ÉPREUVE ÉCRITE	Branche :MATHEMATIQUES I
Section(s): B	N° d'ordre du candidat :
Date de l'épreuve :	Durée de l'épreuve :

Question I (3+8+5=16 points)

- 1) Soient les nombres complexes suivants : $z_1=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$ et $z_2=\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{4}i$
 - a) Déterminer le module et la mesure principale de l'argument de $Z = \left(\frac{z_1}{z_2}\right)^{16}$.
 - b) Déterminer la forme algébrique de Z.
- 2) Soit $P(z) = z^3 + \alpha z^2 + \beta z 4 + 8i$ avec $\alpha, \beta \in \mathbb{C}$
 - a) Déterminer α et β sachant que -2i est une racine de P(z) et que le reste de la division de P(z) par z+2 est 8.
 - b) Résoudre ensuite l'équation P(z)=0 en remplaçant α et β par les valeurs trouvées en a).
- 3) Le plan complexe est muni d'un repère orthonormé.

Soit
$$w = \frac{2z-i}{3i-2z}$$
 avec $z \in \mathbb{C} - \left\{\frac{3i}{2}\right\}$ et $z = x + yi$, $(x, y) \in \mathbb{R}^2$.

- a) Mettre w sous forme algébrique.
- b) Déterminer l'ensemble A des points M d'affixe z tels que w soit un imaginaire pur.
- c) Représenter A dans le plan de Gauss (unité de longueur : 3 cm).

Question II (2+8+6=16 points)

On suppose que le plan est muni d'un repère orthonormé $R = (O, \vec{i}, \vec{j})$.

- 1) Soit \mathbb{P} une parabole de sommet O(0;0) et d'axe focal l'axe (Ox). Déterminer son paramètre sachant que l'ordonnée à l'origine de sa tangente au point T(-4;4) vaut 2.
- 2) Soit la conique Γ de foyer F(-1 ;2), de directrice associée $\delta \equiv y=8$ et d'excentricité $\varepsilon=\sqrt{3}$.
 - a) Déterminer une équation focale, puis une équation réduite de Γ en précisant le repère choisi.
 - b) Déterminer la nature de Γ, les coordonnées de son second foyer, une équation de sa seconde directrice et une équation des asymptotes dans le repère R.
- 3) Identifier et représenter dans le repère R la courbe $C \equiv y = \frac{3}{4}\sqrt{-x^2+6x+7}-1$.

EXAMEN DE FIN D'ÉTUDES SECONDAIRES

Session 2016

ÉPREUVE ÉCRITE	Branche : MATHEMATIQUES I
Section(s): B	N° d'ordre du candidat :
Date de l'épreuve :	Durée de l'épreuve :

Question III (2+2+6+6=16 points)

- 1) Déterminer le terme en x⁻³ provenant du développement de $\left(5x \frac{1}{2x^2}\right)^{12}$
- 2) Un apprenti parfumeur a à sa disposition 6 flacons d'essence. Combien de parfums peut-il créer ?
- 3) Lorsqu'un joueur de football peu talentueux tire des penaltys (Elfmeter) face à un gardien de but de bonne réputation, il y a une probabilité de 45% que le ballon rentre dans le but.
 - a) Ce joueur va tirer 4 penaltys. Calculer la probabilité qu'au moins un ballon rentre dans le but.
 - b) Combien de fois doit-il tirer pour que la probabilité qu'au moins un ballon rentre dans le but dépasse 95% ?
- 4) Un joueur jette 2 fois une paire de dés non truqués. Il gagne 6€ si la somme des points lors d'un lancer vaut 8, sinon il perd 1€. Soit X la variable aléatoire qui désigne le gain du joueur.
 - a) Déterminer la loi de probabilité de X.
 - b) Est-ce que le jeu est favorable ou défavorable au joueur ? Justifier par un calcul.

Question IV (12 points)

Dans un repère orthonormé $R = \left(O, \vec{i}, \vec{j}\right)$, on donne un point A, fixe sur l'axe (Ox) et un point B mobile sur l'axe (Oy). Tracer le cercle circonscrit au triangle AOB ainsi que les tangentes à ce cercle aux points O et B. Déterminer le lieu $\mathbb L$ des points d'intersection de ces tangentes, puis dessiner-le.